BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 24068501)

  • 1. An example of enzymatic promiscuity: the Baylis-Hillman reaction catalyzed by a biotin esterase (BioH) from Escherichia coli.
    Jiang L; Yu HW
    Biotechnol Lett; 2014 Jan; 36(1):99-103. PubMed ID: 24068501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oriented covalent immobilization of esterase BioH on hydrophilic-modified Fe3O4 nanoparticles.
    Li R; Jiang L; Ye L; Lu J; Yu H
    Biotechnol Appl Biochem; 2014; 61(5):603-10. PubMed ID: 24484544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and Activity of the BioH Esterase of Biotin Synthesis is Independent of Genome Context.
    Cao X; Zhu L; Hu Z; Cronan JE
    Sci Rep; 2017 May; 7(1):2141. PubMed ID: 28526858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of a general base mechanism for ester hydrolysis in C-C hydrolase enzymes of the alpha/beta-hydrolase superfamily: a novel mechanism for the serine catalytic triad.
    Li JJ; Bugg TD
    Org Biomol Chem; 2007 Feb; 5(3):507-13. PubMed ID: 17252134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of novel feruloyl esterase activity of BioH in Escherichia coli BL21(DE3).
    Kang L; Bai Y; Cai Y; Zheng X
    Biotechnol Lett; 2016 Jun; 38(6):1009-13. PubMed ID: 26956238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traditional Morita-Baylis-Hillman reaction of aldehydes with methyl vinyl ketone co-catalyzed by triphenylphosphine and nitrophenol.
    Shi M; Liu YH
    Org Biomol Chem; 2006 Apr; 4(8):1468-70. PubMed ID: 16604211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remarkable diversity in the enzymes catalyzing the last step in synthesis of the pimelate moiety of biotin.
    Shapiro MM; Chakravartty V; Cronan JE
    PLoS One; 2012; 7(11):e49440. PubMed ID: 23152908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design of esterase BioH with enhanced enantioselectivity towards methyl (S)-o-chloromandelate.
    Gu J; Ye L; Guo F; Lv X; Lu W; Yu H
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1709-18. PubMed ID: 25104036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of MEKC for the analysis of reactant and product of Baylis-Hillman reaction.
    Qi L; Cui K; Qiao J; Yang G; Chen Y
    J Sep Sci; 2009 May; 32(9):1480-6. PubMed ID: 19360727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh-throughput screening to identify E. coli cells expressing functionally active enzymes on their surface.
    Becker S; Michalczyk A; Wilhelm S; Jaeger KE; Kolmar H
    Chembiochem; 2007 May; 8(8):943-9. PubMed ID: 17458914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional and structural studies of a novel cold-adapted esterase from an Arctic intertidal metagenomic library.
    Fu J; Leiros HK; de Pascale D; Johnson KA; Blencke HM; Landfald B
    Appl Microbiol Biotechnol; 2013 May; 97(9):3965-78. PubMed ID: 22832985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Five-substrate cocktail as a sensor array for measuring enzyme activity fingerprints of lipases and esterases.
    Maillard N; Babiak P; Syed S; Biswas R; Mandrich L; Manco G; Reymond JL
    Anal Chem; 2011 Feb; 83(4):1437-42. PubMed ID: 21244092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional-Based Screening Methods for Detecting Esterase and Lipase Activity Against Multiple Substrates.
    Reyes-Duarte D; Coscolín C; Martínez-Martínez M; Ferrer M; García-Arellano H
    Methods Mol Biol; 2018; 1835():109-117. PubMed ID: 30109647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral phosphine lewis bases catalyzed asymmetric aza-Baylis-Hillman reaction of N-sulfonated imines with activated olefins.
    Shi M; Chen LH; Li CQ
    J Am Chem Soc; 2005 Mar; 127(11):3790-800. PubMed ID: 15771513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermostable esterase from a thermoacidophilic archaeon: purification and characterization for enzymatic resolution of a chiral compound.
    Kim S; Lee SB
    Biosci Biotechnol Biochem; 2004 Nov; 68(11):2289-98. PubMed ID: 15564667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of ALDH from
    Shortall K; Durack E; Magner E; Soulimane T
    Cells; 2021 Dec; 10(12):. PubMed ID: 34944041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of ammonium salts on the lipase/esterase activity assay using p-nitrophenyl esters as substrates.
    De Yan H; Zhang YJ; Liu HC; Zheng JY; Wang Z
    Biotechnol Appl Biochem; 2013; 60(3):343-7. PubMed ID: 23718813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional proteomic analysis of rice bran esterases/lipases and characterization of a novel recombinant esterase.
    Chuang HH; Chen PT; Wang WN; Chen YT; Shaw JF
    J Agric Food Chem; 2011 Mar; 59(5):2019-25. PubMed ID: 21322560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The SGNH-hydrolase of Streptomyces coelicolor has (aryl)esterase and a true lipase activity.
    Bielen A; Cetković H; Long PF; Schwab H; Abramić M; Vujaklija D
    Biochimie; 2009 Mar; 91(3):390-400. PubMed ID: 19041687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First Novozym 435 lipase-catalyzed Morita-Baylis-Hillman reaction in the presence of amides.
    Tian X; Zhang S; Zheng L
    Enzyme Microb Technol; 2016 Mar; 84():32-40. PubMed ID: 26827772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.