BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 24068907)

  • 21. Systems modelling of the EGFR-PYK2-c-Met interaction network predicts and prioritizes synergistic drug combinations for triple-negative breast cancer.
    Shin SY; Müller AK; Verma N; Lev S; Nguyen LK
    PLoS Comput Biol; 2018 Jun; 14(6):e1006192. PubMed ID: 29920512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational Approaches Towards Kinases as Attractive Targets for Anticancer Drug Discovery and Development.
    Hameed R; Khan A; Khan S; Perveen S
    Anticancer Agents Med Chem; 2019; 19(5):592-598. PubMed ID: 30306880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative and Systems Pharmacology. 1. In Silico Prediction of Drug-Target Interactions of Natural Products Enables New Targeted Cancer Therapy.
    Fang J; Wu Z; Cai C; Wang Q; Tang Y; Cheng F
    J Chem Inf Model; 2017 Nov; 57(11):2657-2671. PubMed ID: 28956927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated Analysis of Drug Sensitivity and Selectivity to Predict Synergistic Drug Combinations and Target Coaddictions in Cancer.
    Jaiswal A; Yadav B; Wennerberg K; Aittokallio T
    Methods Mol Biol; 2019; 1888():205-217. PubMed ID: 30519949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DrugComboRanker: drug combination discovery based on target network analysis.
    Huang L; Li F; Sheng J; Xia X; Ma J; Zhan M; Wong ST
    Bioinformatics; 2014 Jun; 30(12):i228-36. PubMed ID: 24931988
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles.
    Li X; Xu Y; Cui H; Huang T; Wang D; Lian B; Li W; Qin G; Chen L; Xie L
    Artif Intell Med; 2017 Nov; 83():35-43. PubMed ID: 28583437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Informatics Approaches for Predicting, Understanding, and Testing Cancer Drug Combinations.
    Tang J
    Methods Mol Biol; 2017; 1636():485-506. PubMed ID: 28730498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning-based multi-drug synergy prediction model for individually tailored anti-cancer therapies.
    She S; Chen H; Ji W; Sun M; Cheng J; Rui M; Feng C
    Front Pharmacol; 2022; 13():1032875. PubMed ID: 36588694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism-based combinations with Pim kinase inhibitors in cancer treatments.
    Yang Q; Chen LS; Gandhi V
    Curr Pharm Des; 2014; 20(42):6670-81. PubMed ID: 25341939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions.
    Tolios A; De Las Rivas J; Hovig E; Trouillas P; Scorilas A; Mohr T
    Drug Resist Updat; 2020 Jan; 48():100662. PubMed ID: 31927437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic combinations of the dual enkephalinase inhibitor PL265 given orally with various analgesic compounds acting on different targets, in a murine model of cancer-induced bone pain.
    González-Rodríguez S; Poras H; Menéndez L; Lastra A; Ouimet T; Fournié-Zaluski MC; Roques BP; Baamonde A
    Scand J Pain; 2017 Jan; 14():25-38. PubMed ID: 28850427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of 2,4-dihydroxy-5-pyrimidinyl imidothiocarbomate as a novel inhibitor to Y box binding protein-1 (YB-1) and its therapeutic actions against breast cancer.
    Gunasekaran VP; Nishi K; Sivakumar D; Sivaraman T; Mathan G
    Eur J Pharm Sci; 2018 Apr; 116():2-14. PubMed ID: 28916481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DSCN: Double-target selection guided by CRISPR screening and network.
    Liu E; Wu X; Wang L; Huo Y; Wu H; Li L; Cheng L
    PLoS Comput Biol; 2022 Aug; 18(8):e1009421. PubMed ID: 35984840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of selective cytotoxic and synthetic lethal drug responses in triple negative breast cancer cells.
    Gautam P; Karhinen L; Szwajda A; Jha SK; Yadav B; Aittokallio T; Wennerberg K
    Mol Cancer; 2016 May; 15(1):34. PubMed ID: 27165605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A kinase inhibition map approach for tumor sensitivity prediction and combination therapy design for targeted drugs.
    Pal R; Berlow N
    Pac Symp Biocomput; 2012; ():351-62. PubMed ID: 22174290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of the polyamine catabolic enzymes SSAT and SMO in the synergistic effects of standard chemotherapeutic agents with a polyamine analogue in human breast cancer cell lines.
    Pledgie-Tracy A; Billam M; Hacker A; Sobolewski MD; Woster PM; Zhang Z; Casero RA; Davidson NE
    Cancer Chemother Pharmacol; 2010 May; 65(6):1067-81. PubMed ID: 19727732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PIK3CA mutation sensitizes breast cancer cells to synergistic therapy of PI3K inhibition and AMPK activation.
    Liu S; Tang Y; Yan M; Jiang W
    Invest New Drugs; 2018 Oct; 36(5):763-772. PubMed ID: 29504069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In silico drug combination discovery for personalized cancer therapy.
    Jeon M; Kim S; Park S; Lee H; Kang J
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):16. PubMed ID: 29560824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting Tumor Cell Response to Synergistic Drug Combinations Using a Novel Simplified Deep Learning Model.
    Zhang H; Feng J; Zeng A; Payne P; Li F
    AMIA Annu Symp Proc; 2020; 2020():1364-1372. PubMed ID: 33936513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of cell sensitivity to antitumor agents by targeting survival pathways.
    Perego P; Cossa G; Zuco V; Zunino F
    Biochem Pharmacol; 2010 Nov; 80(10):1459-65. PubMed ID: 20688050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.