BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 24068960)

  • 1. miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development.
    Wystub K; Besser J; Bachmann A; Boettger T; Braun T
    PLoS Genet; 2013; 9(9):e1003793. PubMed ID: 24068960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of cardiac microRNAs by serum response factor.
    Zhang X; Azhar G; Helms SA; Wei JY
    J Biomed Sci; 2011 Feb; 18(1):15. PubMed ID: 21303526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of microRNAs by Brahma-related gene 1 (Brg1) in smooth muscle cells.
    Chen M; Herring BP
    J Biol Chem; 2013 Mar; 288(9):6397-408. PubMed ID: 23339192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myocardin marks the earliest cardiac gene expression and plays an important role in heart development.
    Chen JF; Wang S; Wu Q; Cao D; Nguyen T; Chen Y; Wang DZ
    Anat Rec (Hoboken); 2008 Oct; 291(10):1200-11. PubMed ID: 18780304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Connective Tissue Growth Factor and Cardiac Fibrosis by an SRF/MicroRNA-133a Axis.
    Angelini A; Li Z; Mericskay M; Decaux JF
    PLoS One; 2015; 10(10):e0139858. PubMed ID: 26440278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myocardin is a direct transcriptional target of Mef2, Tead and Foxo proteins during cardiovascular development.
    Creemers EE; Sutherland LB; McAnally J; Richardson JA; Olson EN
    Development; 2006 Nov; 133(21):4245-56. PubMed ID: 17021041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation.
    Du KL; Ip HS; Li J; Chen M; Dandre F; Yu W; Lu MM; Owens GK; Parmacek MS
    Mol Cell Biol; 2003 Apr; 23(7):2425-37. PubMed ID: 12640126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stem cells and their derivatives can bypass the requirement of myocardin for smooth muscle gene expression.
    Pipes GC; Sinha S; Qi X; Zhu CH; Gallardo TD; Shelton J; Creemers EE; Sutherland L; Richardson JA; Garry DJ; Wright WE; Owens GK; Olson EN
    Dev Biol; 2005 Dec; 288(2):502-13. PubMed ID: 16310178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteasomal degradation of myocardin is required for its transcriptional activity in vascular smooth muscle cells.
    Yin H; Jiang Y; Li H; Li J; Gui Y; Zheng XL
    J Cell Physiol; 2011 Jul; 226(7):1897-906. PubMed ID: 21506120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myocardin is differentially required for the development of smooth muscle cells and cardiomyocytes.
    Hoofnagle MH; Neppl RL; Berzin EL; Teg Pipes GC; Olson EN; Wamhoff BW; Somlyo AV; Owens GK
    Am J Physiol Heart Circ Physiol; 2011 May; 300(5):H1707-21. PubMed ID: 21357509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart.
    Liu N; Bezprozvannaya S; Williams AH; Qi X; Richardson JA; Bassel-Duby R; Olson EN
    Genes Dev; 2008 Dec; 22(23):3242-54. PubMed ID: 19015276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction).
    Chistiakov DA; Orekhov AN; Bobryshev YV
    J Mol Cell Cardiol; 2016 May; 94():107-121. PubMed ID: 27056419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy.
    Wang K; Long B; Zhou J; Li PF
    J Biol Chem; 2010 Apr; 285(16):11903-12. PubMed ID: 20177053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myocardin is a master regulator of smooth muscle gene expression.
    Wang Z; Wang DZ; Pipes GC; Olson EN
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):7129-34. PubMed ID: 12756293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of smooth muscle development by the myocardin family of transcriptional coactivators.
    Wang DZ; Olson EN
    Curr Opin Genet Dev; 2004 Oct; 14(5):558-66. PubMed ID: 15380248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myocardin regulates mitochondrial calcium homeostasis and prevents permeability transition.
    Mughal W; Martens M; Field J; Chapman D; Huang J; Rattan S; Hai Y; Cheung KG; Kereliuk S; West AR; Cole LK; Hatch GM; Diehl-Jones W; Keijzer R; Dolinsky VW; Dixon IM; Parmacek MS; Gordon JW
    Cell Death Differ; 2018 Nov; 25(10):1732-1748. PubMed ID: 29511336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression.
    Wang Z; Wang DZ; Hockemeyer D; McAnally J; Nordheim A; Olson EN
    Nature; 2004 Mar; 428(6979):185-9. PubMed ID: 15014501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miRNA-1 and miRNA-133a are involved in early commitment of pluripotent stem cells and demonstrate antagonistic roles in the regulation of cardiac differentiation.
    Izarra A; Moscoso I; Cañón S; Carreiro C; Fondevila D; Martín-Caballero J; Blanca V; Valiente I; Díez-Juan A; Bernad A
    J Tissue Eng Regen Med; 2017 Mar; 11(3):787-799. PubMed ID: 25492026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myocardin regulates vascular response to injury through miR-24/-29a and platelet-derived growth factor receptor-β.
    Talasila A; Yu H; Ackers-Johnson M; Bot M; van Berkel T; Bennett MR; Bot I; Sinha S
    Arterioscler Thromb Vasc Biol; 2013 Oct; 33(10):2355-65. PubMed ID: 23825366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardin and microRNA-1 modulate bladder activity through connexin 43 expression during post-natal development.
    Imamura M; Sugino Y; Long X; Slivano OJ; Nishikawa N; Yoshimura N; Miano JM
    J Cell Physiol; 2013 Sep; 228(9):1819-26. PubMed ID: 23359472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.