These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24068968)

  • 1. Genotype-environment interactions reveal causal pathways that mediate genetic effects on phenotype.
    Gagneur J; Stegle O; Zhu C; Jakob P; Tekkedil MM; Aiyar RS; Schuon AK; Pe'er D; Steinmetz LM
    PLoS Genet; 2013; 9(9):e1003803. PubMed ID: 24068968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between instrumental variable and mediation-based methods for reconstructing causal gene networks in yeast.
    Ludl AA; Michoel T
    Mol Omics; 2021 Apr; 17(2):241-251. PubMed ID: 33438713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint genetic analysis of gene expression data with inferred cellular phenotypes.
    Parts L; Stegle O; Winn J; Durbin R
    PLoS Genet; 2011 Jan; 7(1):e1001276. PubMed ID: 21283789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative trait locus mapping of genes under selection across multiple years and sites in Avena barbata: epistasis, pleiotropy, and genotype-by-environment interactions.
    Latta RG; Gardner KM; Staples DA
    Genetics; 2010 May; 185(1):375-85. PubMed ID: 20194964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Origins of Complex Heritability in Natural Genotype-to-Phenotype Relationships.
    Jakobson CM; Jarosz DF
    Cell Syst; 2019 May; 8(5):363-379.e3. PubMed ID: 31054809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene-gene and gene-environment interactions in complex traits in yeast.
    Yadav A; Sinha H
    Yeast; 2018 Jun; 35(6):403-416. PubMed ID: 29322552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene-Environment Interactions in Stress Response Contribute Additively to a Genotype-Environment Interaction.
    Matsui T; Ehrenreich IM
    PLoS Genet; 2016 Jul; 12(7):e1006158. PubMed ID: 27437938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-locus Genotypes Underlying Temperature Sensitivity in a Mutationally Induced Trait.
    Lee JT; Taylor MB; Shen A; Ehrenreich IM
    PLoS Genet; 2016 Mar; 12(3):e1005929. PubMed ID: 26990313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structured association analysis leads to insight into Saccharomyces cerevisiae gene regulation by finding multiple contributing eQTL hotspots associated with functional gene modules.
    Curtis RE; Kim S; Woolford JL; Xu W; Xing EP
    BMC Genomics; 2013 Mar; 14():196. PubMed ID: 23514438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolving the Complex Genetic Basis of Phenotypic Variation and Variability of Cellular Growth.
    Ziv N; Shuster BM; Siegal ML; Gresham D
    Genetics; 2017 Jul; 206(3):1645-1657. PubMed ID: 28495957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abundant gene-by-environment interactions in gene expression reaction norms to copper within Saccharomyces cerevisiae.
    Hodgins-Davis A; Adomas AB; Warringer J; Townsend JP
    Genome Biol Evol; 2012; 4(11):1061-79. PubMed ID: 23019066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic mapping of MAPK-mediated complex traits Across S. cerevisiae.
    Treusch S; Albert FW; Bloom JS; Kotenko IE; Kruglyak L
    PLoS Genet; 2015 Jan; 11(1):e1004913. PubMed ID: 25569670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccharomyces cerevisiae metabolism in ecological context.
    Jouhten P; Ponomarova O; Gonzalez R; Patil KR
    FEMS Yeast Res; 2016 Nov; 16(7):. PubMed ID: 27634775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory Rewiring in a Cross Causes Extensive Genetic Heterogeneity.
    Matsui T; Linder R; Phan J; Seidl F; Ehrenreich IM
    Genetics; 2015 Oct; 201(2):769-77. PubMed ID: 26232408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical power of expression quantitative trait loci for mapping of complex trait loci in natural populations.
    Schliekelman P
    Genetics; 2008 Apr; 178(4):2201-16. PubMed ID: 18245851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian framework for inference of the genotype-phenotype map for segregating populations.
    Hageman RS; Leduc MS; Korstanje R; Paigen B; Churchill GA
    Genetics; 2011 Apr; 187(4):1163-70. PubMed ID: 21242536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of Multi-omics Data for Expression Quantitative Trait Loci (eQTL) Analysis and eQTL Epistasis.
    Kang M; Gao J
    Methods Mol Biol; 2020; 2082():157-171. PubMed ID: 31849014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating transcriptomic network reconstruction and eQTL analyses reveals mechanistic connections between genomic architecture and Brassica rapa development.
    Baker RL; Leong WF; Brock MT; Rubin MJ; Markelz RJC; Welch S; Maloof JN; Weinig C
    PLoS Genet; 2019 Sep; 15(9):e1008367. PubMed ID: 31513571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting the Genetic Regulation of Yeast Growth Plasticity in Response to Environmental Changes.
    Zan Y; Carlborg Ö
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33137976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Causal inference of regulator-target pairs by gene mapping of expression phenotypes.
    Kulp DC; Jagalur M
    BMC Genomics; 2006 May; 7():125. PubMed ID: 16719927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.