These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 24069220)

  • 1. Mapping the voxel-wise effective connectome in resting state FMRI.
    Wu GR; Stramaglia S; Chen H; Liao W; Marinazzo D
    PLoS One; 2013; 8(9):e73670. PubMed ID: 24069220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping individual voxel-wise morphological connectivity using wavelet transform of voxel-based morphology.
    Wang XH; Jiao Y; Li L
    PLoS One; 2018; 13(7):e0201243. PubMed ID: 30040855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a standardized structural-functional group connectome in MNI space.
    Horn A; Blankenburg F
    Neuroimage; 2016 Jan; 124(Pt A):310-322. PubMed ID: 26327244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
    DSouza AM; Abidin AZ; Leistritz L; Wismüller A
    J Neurosci Methods; 2017 Aug; 287():68-79. PubMed ID: 28629720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.
    Lee K; Lina JM; Gotman J; Grova C
    Neuroimage; 2016 Jul; 134():434-449. PubMed ID: 27046111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conditional Granger causality model approach for group analysis in functional magnetic resonance imaging.
    Zhou Z; Wang X; Klahr NJ; Liu W; Arias D; Liu H; von Deneen KM; Wen Y; Lu Z; Xu D; Liu Y
    Magn Reson Imaging; 2011 Apr; 29(3):418-33. PubMed ID: 21232892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural-functional connectome and the default mode network of the human brain.
    Horn A; Ostwald D; Reisert M; Blankenburg F
    Neuroimage; 2014 Nov; 102 Pt 1():142-51. PubMed ID: 24099851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome.
    Gilson M; Moreno-Bote R; Ponce-Alvarez A; Ritter P; Deco G
    PLoS Comput Biol; 2016 Mar; 12(3):e1004762. PubMed ID: 26982185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrastive voxel clustering for multiscale modeling of brain network.
    Ding Z; Huang Y; Zeng X; Jiang S; Feng S; Wang Z; Wang L; Wang Z; Xu Y; Liu Y;
    Neuroimage; 2024 Aug; 297():120755. PubMed ID: 39074761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-world directed networks in the human brain: multivariate Granger causality analysis of resting-state fMRI.
    Liao W; Ding J; Marinazzo D; Xu Q; Wang Z; Yuan C; Zhang Z; Lu G; Chen H
    Neuroimage; 2011 Feb; 54(4):2683-94. PubMed ID: 21073960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voxelwise eigenvector centrality mapping of the human functional connectome reveals an influence of the catechol-O-methyltransferase val158met polymorphism on the default mode and somatomotor network.
    Markett S; Montag C; Heeren B; Saryiska R; Lachmann B; Weber B; Reuter M
    Brain Struct Funct; 2016 Jun; 221(5):2755-65. PubMed ID: 26025199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain.
    van den Heuvel MP; Stam CJ; Boersma M; Hulshoff Pol HE
    Neuroimage; 2008 Nov; 43(3):528-39. PubMed ID: 18786642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Voxel-Wise Functional Connectome Can Be Efficiently Derived from Co-activations in a Sparse Spatio-Temporal Point-Process.
    Tagliazucchi E; Siniatchkin M; Laufs H; Chialvo DR
    Front Neurosci; 2016; 10():381. PubMed ID: 27601975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structurofunctional resting-state networks correlate with motor function in chronic stroke.
    Kalinosky BT; Berrios Barillas R; Schmit BD
    Neuroimage Clin; 2017; 16():610-623. PubMed ID: 28971011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Test-retest reliability of graph metrics in high-resolution functional connectomics: a resting-state functional MRI study.
    Du HX; Liao XH; Lin QX; Li GS; Chi YZ; Liu X; Yang HZ; Wang Y; Xia MR
    CNS Neurosci Ther; 2015 Oct; 21(10):802-16. PubMed ID: 26212146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-Scale Granger Causality Analysis on Resting-State Functional MRI.
    DSouza AM; Abidin AZ; Leistritz L; Wismüller A
    Proc SPIE Int Soc Opt Eng; 2016 Mar; 9788():. PubMed ID: 29170585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional connectome of human cerebellum.
    Chen Z; Zhang R; Huo H; Liu P; Zhang C; Feng T
    Neuroimage; 2022 May; 251():119015. PubMed ID: 35189360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional brain hubs and their test-retest reliability: a multiband resting-state functional MRI study.
    Liao XH; Xia MR; Xu T; Dai ZJ; Cao XY; Niu HJ; Zuo XN; Zang YF; He Y
    Neuroimage; 2013 Dec; 83():969-82. PubMed ID: 23899725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.