These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24069244)

  • 1. Comparison of properties of medial entorhinal cortex layer II neurons in two anatomical dimensions with and without cholinergic activation.
    Yoshida M; Jochems A; Hasselmo ME
    PLoS One; 2013; 8(9):e73904. PubMed ID: 24069244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological Properties of Neurons in Bat Entorhinal Cortex Exhibit an Inverse Gradient along the Dorsal-Ventral Axis Compared to Entorhinal Neurons in Rat.
    Heys JG; Shay CF; MacLeod KM; Witter MP; Moss CF; Hasselmo ME
    J Neurosci; 2016 Apr; 36(16):4591-9. PubMed ID: 27098700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholinergic receptor activation supports persistent firing in layer III neurons in the medial entorhinal cortex.
    Jochems A; Reboreda A; Hasselmo ME; Yoshida M
    Behav Brain Res; 2013 Oct; 254():108-15. PubMed ID: 23810207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spike Afterpotentials Shape the
    Csordás DÉ; Fischer C; Nagele J; Stemmler M; Herz AVM
    J Neurosci; 2020 Jun; 40(23):4512-4524. PubMed ID: 32332120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knock-out of HCN1 subunit flattens dorsal-ventral frequency gradient of medial entorhinal neurons in adult mice.
    Giocomo LM; Hasselmo ME
    J Neurosci; 2009 Jun; 29(23):7625-30. PubMed ID: 19515931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How reduction of theta rhythm by medial septum inactivation may covary with disruption of entorhinal grid cell responses due to reduced cholinergic transmission.
    Pilly PK; Grossberg S
    Front Neural Circuits; 2013; 7():173. PubMed ID: 24198762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency of subthreshold oscillations at different membrane potential voltages in neurons at different anatomical positions on the dorsoventral axis in the rat medial entorhinal cortex.
    Yoshida M; Giocomo LM; Boardman I; Hasselmo ME
    J Neurosci; 2011 Aug; 31(35):12683-94. PubMed ID: 21880929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computation by oscillations: implications of experimental data for theoretical models of grid cells.
    Giocomo LM; Hasselmo ME
    Hippocampus; 2008; 18(12):1186-99. PubMed ID: 19021252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholinergic modulation of the resonance properties of stellate cells in layer II of medial entorhinal cortex.
    Heys JG; Giocomo LM; Hasselmo ME
    J Neurophysiol; 2010 Jul; 104(1):258-70. PubMed ID: 20445030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons.
    Klink R; Alonso A
    J Neurophysiol; 1997 Apr; 77(4):1813-28. PubMed ID: 9114238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time constants of h current in layer ii stellate cells differ along the dorsal to ventral axis of medial entorhinal cortex.
    Giocomo LM; Hasselmo ME
    J Neurosci; 2008 Sep; 28(38):9414-25. PubMed ID: 18799674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage dependence of subthreshold resonance frequency in layer II of medial entorhinal cortex.
    Shay CF; Boardman IS; James NM; Hasselmo ME
    Hippocampus; 2012 Aug; 22(8):1733-49. PubMed ID: 22368047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical and Network Neuronal Properties Are Preferentially Disrupted in Dorsal, But Not Ventral, Medial Entorhinal Cortex in a Mouse Model of Tauopathy.
    Booth CA; Ridler T; Murray TK; Ward MA; de Groot E; Goodfellow M; Phillips KG; Randall AD; Brown JT
    J Neurosci; 2016 Jan; 36(2):312-24. PubMed ID: 26758825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing.
    Giocomo LM; Zilli EA; Fransén E; Hasselmo ME
    Science; 2007 Mar; 315(5819):1719-22. PubMed ID: 17379810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of cholinergic modulation and graded persistent activity in layer v of medial entorhinal cortex.
    Reboreda A; Raouf R; Alonso A; Séguéla P
    J Neurophysiol; 2007 Jun; 97(6):3937-47. PubMed ID: 17442765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular properties of principal neurons in the rat entorhinal cortex. II. The medial entorhinal cortex.
    Canto CB; Witter MP
    Hippocampus; 2012 Jun; 22(6):1277-99. PubMed ID: 22161956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological roles of Kv2 channels in entorhinal cortex layer II stellate cells revealed by Guangxitoxin-1E.
    Hönigsperger C; Nigro MJ; Storm JF
    J Physiol; 2017 Feb; 595(3):739-757. PubMed ID: 27562026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo cholinergic modulation of the cellular properties of medial entorhinal cortex neurons.
    Tsuno Y; Schultheiss NW; Hasselmo ME
    J Physiol; 2013 May; 591(10):2611-27. PubMed ID: 23529129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromodulation of I(h) in layer II medial entorhinal cortex stellate cells: a voltage-clamp study.
    Heys JG; Hasselmo ME
    J Neurosci; 2012 Jun; 32(26):9066-72. PubMed ID: 22745506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine suppresses persistent firing in layer III lateral entorhinal cortex neurons.
    Batallán-Burrowes AA; Chapman CA
    Neurosci Lett; 2018 May; 674():70-74. PubMed ID: 29524644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.