These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 24069453)
1. A reverse engineering approach to optimize experiments for the construction of biological regulatory networks. Zhang X; Shao B; Wu Y; Qi O PLoS One; 2013; 8(9):e75931. PubMed ID: 24069453 [TBL] [Abstract][Full Text] [Related]
3. Modelling gene and protein regulatory networks with answer set programming. Fayruzov T; Janssen J; Vermeir D; Cornelis C; De Cock M Int J Data Min Bioinform; 2011; 5(2):209-29. PubMed ID: 21544955 [TBL] [Abstract][Full Text] [Related]
4. Identification of a topological characteristic responsible for the biological robustness of regulatory networks. Wu Y; Zhang X; Yu J; Ouyang Q PLoS Comput Biol; 2009 Jul; 5(7):e1000442. PubMed ID: 19629157 [TBL] [Abstract][Full Text] [Related]
5. Using Sub-Network Combinations to Scale Up an Enumeration Method for Determining the Network Structures of Biological Functions. Xi JY; Ouyang Q PLoS One; 2016; 11(12):e0168214. PubMed ID: 27992476 [TBL] [Abstract][Full Text] [Related]
6. Network evaluation from the consistency of the graph structure with the measured data. Saito S; Aburatani S; Horimoto K BMC Syst Biol; 2008 Oct; 2():84. PubMed ID: 18828895 [TBL] [Abstract][Full Text] [Related]
7. Refining network reconstruction based on functional reliability. Zhang Y; Ouyang Q; Geng Z J Theor Biol; 2014 Jul; 353():170-8. PubMed ID: 24631047 [TBL] [Abstract][Full Text] [Related]
9. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. Castelo R; Roverato A J Comput Biol; 2009 Feb; 16(2):213-27. PubMed ID: 19178140 [TBL] [Abstract][Full Text] [Related]
10. Dynamical and topological robustness of the mammalian cell cycle network: a reverse engineering approach. Ruz GA; Goles E; Montalva M; Fogel GB Biosystems; 2014 Jan; 115():23-32. PubMed ID: 24212100 [TBL] [Abstract][Full Text] [Related]
11. bLARS: An Algorithm to Infer Gene Regulatory Networks. Singh N; Vidyasagar M IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):301-14. PubMed ID: 27045829 [TBL] [Abstract][Full Text] [Related]
12. Identification of functional modules using network topology and high-throughput data. Ulitsky I; Shamir R BMC Syst Biol; 2007 Jan; 1():8. PubMed ID: 17408515 [TBL] [Abstract][Full Text] [Related]
13. Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery. Bosl WJ BMC Syst Biol; 2007 Feb; 1():13. PubMed ID: 17408503 [TBL] [Abstract][Full Text] [Related]
14. Neutral space analysis for a Boolean network model of the fission yeast cell cycle network. Ruz GA; Timmermann T; Barrera J; Goles E Biol Res; 2014 Nov; 47(1):64. PubMed ID: 25723815 [TBL] [Abstract][Full Text] [Related]
15. Genetic network identification using convex programming. Julius A; Zavlanos M; Boyd S; Pappas GJ IET Syst Biol; 2009 May; 3(3):155-66. PubMed ID: 19449976 [TBL] [Abstract][Full Text] [Related]
17. Reconstruction of transcriptional network from microarray data using combined mutual information and network-assisted regression. Wang XD; Qi YX; Jiang ZL IET Syst Biol; 2011 Mar; 5(2):95-102. PubMed ID: 21405197 [TBL] [Abstract][Full Text] [Related]
18. Structural and functional analysis of cellular networks with CellNetAnalyzer. Klamt S; Saez-Rodriguez J; Gilles ED BMC Syst Biol; 2007 Jan; 1():2. PubMed ID: 17408509 [TBL] [Abstract][Full Text] [Related]
19. Inference of complex biological networks: distinguishability issues and optimization-based solutions. Szederkényi G; Banga JR; Alonso AA BMC Syst Biol; 2011 Oct; 5():177. PubMed ID: 22034917 [TBL] [Abstract][Full Text] [Related]
20. Global entrainment of transcriptional systems to periodic inputs. Russo G; di Bernardo M; Sontag ED PLoS Comput Biol; 2010 Apr; 6(4):e1000739. PubMed ID: 20418962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]