BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 240700)

  • 21. Acetate scavenging activity in Escherichia coli: interplay of acetyl-CoA synthetase and the PEP-glyoxylate cycle in chemostat cultures.
    Renilla S; Bernal V; Fuhrer T; Castaño-Cerezo S; Pastor JM; Iborra JL; Sauer U; Cánovas M
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2109-24. PubMed ID: 21881893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic induction of isocitrate lyase and malate synthase in submerged rice seedlings indicates the important metabolic role of the glyoxylate cycle.
    Lu Y; Wu YR; Han B
    Acta Biochim Biophys Sin (Shanghai); 2005 Jun; 37(6):406-14. PubMed ID: 15944756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of synthesis of citrate synthase in regreening Euglena gracilis.
    Cannons AC; Merrett MJ
    Eur J Biochem; 1984 Aug; 142(3):597-602. PubMed ID: 6147248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glyoxylate cycle in the epiphyseal growth plate: isocitrate lyase and malate synthase identified in mammalian cartilage.
    Davis WL; Jones RG; Farmer GR; Matthews JL; Goodman DB
    Anat Rec; 1989 Apr; 223(4):357-62. PubMed ID: 2712349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Particulate nature of glycolate dehydrogenase in euglena: possible localization in microbodies.
    Graves LB; Trelease RN; Becker WM
    Biochem Biophys Res Commun; 1971 Jul; 44(2):280-6. PubMed ID: 5003610
    [No Abstract]   [Full Text] [Related]  

  • 26. REPLICATION OF DNA AND CELL DIVISION IN SYNCHRONOUSLY DIVIDING CULTURES OF EUGLENA GRACILIS.
    EDMUNDS LN
    Science; 1964 Jul; 145(3629):266-8. PubMed ID: 14171566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the mechanism of action of isocitrate lyase.
    Dimroth P; Mayer K; Eggerer H
    Eur J Biochem; 1975 Feb; 51(1):267-73. PubMed ID: 235430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of circadian oscillations in alanine dehydrogenase activity in non-dividing populations of Euglena gracilis (Z).
    Sulzman FM; Edmunds LN
    Biochim Biophys Acta; 1973 Oct; 320(3):594-609. PubMed ID: 4201692
    [No Abstract]   [Full Text] [Related]  

  • 29. The branch point effect. Ultrasensitivity and subsensitivity to metabolic control.
    LaPorte DC; Walsh K; Koshland DE
    J Biol Chem; 1984 Nov; 259(22):14068-75. PubMed ID: 6389540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbody-marker Enzymes during Transition from Phototrophic to Organotrophic Growth in Euglena.
    Collins N; Merrett MJ
    Plant Physiol; 1975 Jun; 55(6):1018-22. PubMed ID: 16659202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolism of L-threonine and its relationship to sclerotium formation in Sclerotium rolfsii.
    Kritzman G; Okon Y; Chet I; Henis Y
    J Gen Microbiol; 1976 Jul; 95(1):78-86. PubMed ID: 986416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of mutants of the yeast Yarrowia lipolytica defective in acetyl-coenzyme A synthetase.
    Kujau M; Weber H; Barth G
    Yeast; 1992 Mar; 8(3):193-203. PubMed ID: 1349449
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cleavage of malyl-Coenzyme A into acetyl-Coenzyme A and glyoxylate by Pseudomonas AM1 and other C1-unit-utilizing bacteria.
    Salem AR; Hacking AJ; Quayle JR
    Biochem J; 1973 Sep; 136(1):89-96. PubMed ID: 4772632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Malate Synthase and β-Methylmalyl Coenzyme A Lyase Reactions in the Methylaspartate Cycle in Haloarcula hispanica.
    Borjian F; Han J; Hou J; Xiang H; Zarzycki J; Berg IA
    J Bacteriol; 2017 Feb; 199(4):. PubMed ID: 27920298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A possible ribosomal-directed regulatory system in Euglena gracilis. Chlorophyll synthesis.
    Perl M
    Biochem J; 1972 Dec; 130(3):813-8. PubMed ID: 4198358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Events surrounding the early development of Euglena chloroplasts: cellular origins of chloroplast enzymes in euglena.
    Bovarnick JG; Schiff JA; Freedman Z; Egan JM
    J Gen Microbiol; 1974 Jul; 83(0):63-71. PubMed ID: 4213097
    [No Abstract]   [Full Text] [Related]  

  • 37. Purification and some properties of glyoxylate reductase (NADP+) and its functional location in mitochondria in Euglena gracilis z.
    Yokota A; Haga S; Kitaoka S
    Biochem J; 1985 Apr; 227(1):211-6. PubMed ID: 3922357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimulation of isocitrate lyase biosynthesis by hydroxylamine and hydrazine.
    Vanni P; Vincenzini MT; Vincieri F; Baccari V
    Mol Cell Biochem; 1977 Apr; 15(2):125-31. PubMed ID: 895730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The intracellular localization of glycollate oxidoreductase in Euglena gracilis.
    Lord JM; Merrett MJ
    Biochem J; 1971 Sep; 124(2):275-81. PubMed ID: 5003470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of isocitrate lyase in Nocardia salmonicolor (NCIB9701).
    Sariaslani FS; Westwood AW; Higgins IJ
    J Gen Microbiol; 1975 Dec; 91(2):315-24. PubMed ID: 1206373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.