BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24070210)

  • 21. The design of synthetic superoxide dismutase mimetics: seven-coordinate water soluble manganese(ii) and iron(ii) complexes and their superoxide dismutase-like activity studies.
    Singh O; Tyagi N; Olmstead MM; Ghosh K
    Dalton Trans; 2017 Oct; 46(41):14186-14191. PubMed ID: 28984335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative study of copper(II)-curcumin complexes as superoxide dismutase mimics and free radical scavengers.
    Barik A; Mishra B; Kunwar A; Kadam RM; Shen L; Dutta S; Padhye S; Satpati AK; Zhang HY; Indira Priyadarsini K
    Eur J Med Chem; 2007 Apr; 42(4):431-9. PubMed ID: 17240482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of copper coordinate complexes on the scavenging of reactive oxygen species.
    Tian Y; Fang Y; Sun C; Shen W; Luo Q; Shen M
    Biochem Biophys Res Commun; 1993 Mar; 191(2):646-53. PubMed ID: 8384848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Copper complexes of nicotinic-aromatic carboxylic acids as superoxide dismutase mimetics.
    Suksrichavalit T; Prachayasittikul S; Piacham T; Isarankura-Na-Ayudhya C; Nantasenamat C; Prachayasittikul V
    Molecules; 2008 Dec; 13(12):3040-56. PubMed ID: 19078847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new strategy for intracellular delivery of enzyme using mesoporous silica nanoparticles: superoxide dismutase.
    Chen YP; Chen CT; Hung Y; Chou CM; Liu TP; Liang MR; Chen CT; Mou CY
    J Am Chem Soc; 2013 Jan; 135(4):1516-23. PubMed ID: 23289802
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of a new copper(II)-curcumin complex as superoxide dismutase mimic and its free radical reactions.
    Barik A; Mishra B; Shen L; Mohan H; Kadam RM; Dutta S; Zhang HY; Priyadarsini KI
    Free Radic Biol Med; 2005 Sep; 39(6):811-22. PubMed ID: 16109310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzyme-mimetic activity of Ce-intercalated titanate nanosheets.
    Kamada K; Soh N
    J Phys Chem B; 2015 Apr; 119(16):5309-14. PubMed ID: 25822086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential profiles of copper-induced ROS generation in human neuroblastoma and astrocytoma cells.
    Qian Y; Zheng Y; Abraham L; Ramos KS; Tiffany-Castiglioni E
    Brain Res Mol Brain Res; 2005 Apr; 134(2):323-32. PubMed ID: 15836927
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copper complexes of 1,10-phenanthroline and related compounds as superoxide dismutase mimetics.
    Bijloo GJ; van der Goot H; Bast A; Timmerman H
    J Inorg Biochem; 1990 Nov; 40(3):237-44. PubMed ID: 1963439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superoxide dismutases and their impact upon human health.
    Johnson F; Giulivi C
    Mol Aspects Med; 2005; 26(4-5):340-52. PubMed ID: 16099495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycine-functionalized copper(ii) hydroxide nanoparticles with high intrinsic superoxide dismutase activity.
    Korschelt K; Ragg R; Metzger CS; Kluenker M; Oster M; Barton B; Panthöfer M; Strand D; Kolb U; Mondeshki M; Strand S; Brieger J; Nawaz Tahir M; Tremel W
    Nanoscale; 2017 Mar; 9(11):3952-3960. PubMed ID: 28265620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Copper, zinc and superoxide dismutase activities in premature infants: a review.
    Airede AK
    East Afr Med J; 1993 Jul; 70(7):441-4. PubMed ID: 8293704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cooperative action of antioxidant defense systems in Drosophila.
    Missirlis F; Phillips JP; Jäckle H
    Curr Biol; 2001 Aug; 11(16):1272-7. PubMed ID: 11525742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Localization of copper-zinc superoxide dismutase mRNA in human hippocampus by in situ hybridization.
    Ceballos I; Javoy-Agid F; Hirsch EC; Dumas S; Kamoun PP; Sinet PM; Agid Y
    Neurosci Lett; 1989 Oct; 105(1-2):41-6. PubMed ID: 2485884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Role of Zn, Cu--trace elements and superoxide dismutase (SOD) in oxidative stress progression in chronic venous insufficiency (CVI)].
    Krzyściak W; Kózka M; Kowalska J; Kwiatek WM
    Przegl Lek; 2010; 67(7):446-9. PubMed ID: 21387752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A critical assessment of the evidence from XAFS and crystallography for the breakage of the imidazolate bridge during catalysis in CuZn superoxide dismutase.
    Murphy LM; Strange RW; Hasnain SS
    Structure; 1997 Mar; 5(3):371-9. PubMed ID: 9083106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Oxygen radicals-superoxide dismutase system and reproduction medicine].
    Ishikawa M
    Nihon Sanka Fujinka Gakkai Zasshi; 1993 Aug; 45(8):842-8. PubMed ID: 8371013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superoxide dismutase, catalase, and glutathione peroxidase activities in copper/zinc-superoxide dismutase transgenic mice.
    Przedborski S; Jackson-Lewis V; Kostic V; Carlson E; Epstein CJ; Cadet JL
    J Neurochem; 1992 May; 58(5):1760-7. PubMed ID: 1560230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Copper complexes of pyridine derivatives with superoxide scavenging and antimicrobial activities.
    Suksrichavalit T; Prachayasittikul S; Nantasenamat C; Isarankura-Na-Ayudhya C; Prachayasittikul V
    Eur J Med Chem; 2009 Aug; 44(8):3259-65. PubMed ID: 19375194
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential.
    Batinić-Haberle I; Rebouças JS; Spasojević I
    Antioxid Redox Signal; 2010 Sep; 13(6):877-918. PubMed ID: 20095865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.