These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24070254)

  • 1. Supercapacitance from cellulose and carbon nanotube nanocomposite fibers.
    Deng L; Young RJ; Kinloch IA; Abdelkader AM; Holmes SM; De Haro-Del Rio DA; Eichhorn SJ
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9983-90. PubMed ID: 24070254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductive cable fibers with insulating surface prepared by coaxial electrospinning of multiwalled nanotubes and cellulose.
    Miyauchi M; Miao J; Simmons TJ; Lee JW; Doherty TV; Dordick JS; Linhardt RJ
    Biomacromolecules; 2010 Sep; 11(9):2440-5. PubMed ID: 20690644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanofibers derived from cellulose via molten-salt method as supercapacitor electrode.
    Zhong Y; Wang T; Yan M; Huang X; Zhou X
    Int J Biol Macromol; 2022 May; 207():541-548. PubMed ID: 35296438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose acetate/multi-wall carbon nanotube/Ag nanofiber composite for antibacterial applications.
    Jatoi AW; Ogasawara H; Kim IS; Ni QQ
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110679. PubMed ID: 32204107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characteristics of electrospun multiwalled carbon nanotube/polyvinylpyrrolidone nanocomposite nanofiber.
    Zhang K; Choi HJ; Kim JH
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5446-9. PubMed ID: 21770203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural cellulose fiber as substrate for supercapacitor.
    Gui Z; Zhu H; Gillette E; Han X; Rubloff GW; Hu L; Lee SB
    ACS Nano; 2013 Jul; 7(7):6037-46. PubMed ID: 23777461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications.
    Luo Y; Wang S; Shen M; Qi R; Fang Y; Guo R; Cai H; Cao X; Tomás H; Zhu M; Shi X
    Carbohydr Polym; 2013 Jan; 91(1):419-27. PubMed ID: 23044152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers.
    Cai J; Niu H; Li Z; Du Y; Cizek P; Xie Z; Xiong H; Lin T
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14946-53. PubMed ID: 26087346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical properties of polyaniline and multi-walled carbon nanotube hybrid fibers.
    Kim YJ; Shin MK; Kim SJ; Kim SK; Lee H; Park JS; Kim SI
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4185-9. PubMed ID: 18047147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher specific capacitance and compressibility nanocellulose based supercapacitor hydrogel electrode assembled by efficient impregnation.
    Wang X; Chen Y; Wu C
    Int J Biol Macromol; 2024 May; 267(Pt 2):131463. PubMed ID: 38599418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fe
    Pant B; Pant HR; Park M
    Molecules; 2020 Feb; 25(5):. PubMed ID: 32121021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coaxial fiber supercapacitor using all-carbon material electrodes.
    Le VT; Kim H; Ghosh A; Kim J; Chang J; Vu QA; Pham DT; Lee JH; Kim SW; Lee YH
    ACS Nano; 2013 Jul; 7(7):5940-7. PubMed ID: 23731060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiwalled carbon nanotube (MWCNT) reinforced cellulose fibers by electrospinning.
    Lu P; Hsieh YL
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2413-20. PubMed ID: 20669908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers.
    Babaee M; Jonoobi M; Hamzeh Y; Ashori A
    Carbohydr Polym; 2015 Nov; 132():1-8. PubMed ID: 26256317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanofibers prepared via electrospinning.
    Inagaki M; Yang Y; Kang F
    Adv Mater; 2012 May; 24(19):2547-66. PubMed ID: 22511357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Lignin-Cellulose-Based Carbon Nanofibers as High-Performance Supercapacitors.
    Cao Q; Zhu M; Chen J; Song Y; Li Y; Zhou J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1210-1221. PubMed ID: 31845573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass-Based Carbon Nanofibers Prepared by Electrospinning for Supercapacitor.
    Zhang YQ; Shi GF; Chen B; Wang GY; Guo TC
    J Nanosci Nanotechnol; 2018 Aug; 18(8):5731-5737. PubMed ID: 29458633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial-cellulose-derived carbon nanofiber@MnO₂ and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density.
    Chen LF; Huang ZH; Liang HW; Guan QF; Yu SH
    Adv Mater; 2013 Sep; 25(34):4746-52. PubMed ID: 23716319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries.
    Chen Y; Lu Z; Zhou L; Mai YW; Huang H
    Nanoscale; 2012 Nov; 4(21):6800-5. PubMed ID: 23000946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.
    Chen LF; Zhang XD; Liang HW; Kong M; Guan QF; Chen P; Wu ZY; Yu SH
    ACS Nano; 2012 Aug; 6(8):7092-102. PubMed ID: 22769051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.