BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

645 related articles for article (PubMed ID: 24070298)

  • 1. Effect of ion structure on conductivity in lithium-doped ionic liquid electrolytes: a molecular dynamics study.
    Liu H; Maginn E
    J Chem Phys; 2013 Sep; 139(11):114508. PubMed ID: 24070298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical properties of three ionic liquids containing a tetracyanoborate anion and their lithium salt mixtures.
    Sanchez-Ramirez N; Martins VL; Ando RA; Camilo FF; Urahata SM; Ribeiro MC; Torresi RM
    J Phys Chem B; 2014 Jul; 118(29):8772-81. PubMed ID: 24992482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Li+ solvation and transport properties in ionic liquid/lithium salt mixtures: a molecular dynamics simulation study.
    Li Z; Smith GD; Bedrov D
    J Phys Chem B; 2012 Oct; 116(42):12801-9. PubMed ID: 22978679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI- ionic liquids.
    Borodin O; Smith GD; Henderson W
    J Phys Chem B; 2006 Aug; 110(34):16879-86. PubMed ID: 16927976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and Transport Properties of Lithium-Doped Aprotic and Protic Ionic Liquid Electrolytes: Insights from Molecular Dynamics Simulations.
    Nasrabadi AT; Ganesan V
    J Phys Chem B; 2019 Jul; 123(26):5588-5600. PubMed ID: 31244094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability.
    Haskins JB; Bauschlicher CW; Lawson JW
    J Phys Chem B; 2015 Nov; 119(46):14705-19. PubMed ID: 26505208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemistry of magnesium electrolytes in ionic liquids for secondary batteries.
    Vardar G; Sleightholme AE; Naruse J; Hiramatsu H; Siegel DJ; Monroe CW
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18033-9. PubMed ID: 25248147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational and experimental investigation of Li-doped ionic liquid electrolytes: [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4].
    Haskins JB; Bennett WR; Wu JJ; Hernández DM; Borodin O; Monk JD; Bauschlicher CW; Lawson JW
    J Phys Chem B; 2014 Sep; 118(38):11295-309. PubMed ID: 25159701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two phosphonium ionic liquids with high Li(+) transport number.
    Martins VL; Sanchez-Ramirez N; Ribeiro MC; Torresi RM
    Phys Chem Chem Phys; 2015 Sep; 17(35):23041-51. PubMed ID: 26272339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of uranyl(VI) and plutonyl(VI) cations in ionic liquid/water mixtures via molecular dynamics simulations.
    Maerzke KA; Goff GS; Runde WH; Schneider WF; Maginn EJ
    J Phys Chem B; 2013 Sep; 117(37):10852-68. PubMed ID: 23964666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic liquid-in-oil microemulsions composed of double chain surface active ionic liquid as a surfactant: temperature dependent solvent and rotational relaxation dynamics of coumarin-153 in [Py][TF2N]/[C4mim][AOT]/benzene microemulsions.
    Rao VG; Mandal S; Ghosh S; Banerjee C; Sarkar N
    J Phys Chem B; 2012 Jul; 116(28):8210-21. PubMed ID: 22721252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MD simulations of the formation of stable clusters in mixtures of alkaline salts and imidazolium-based ionic liquids.
    Méndez-Morales T; Carrete J; Bouzón-Capelo S; Pérez-Rodríguez M; Cabeza Ó; Gallego LJ; Varela LM
    J Phys Chem B; 2013 Mar; 117(11):3207-20. PubMed ID: 23480174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Li+ transport in lithium sulfonylimide-oligo(ethylene oxide) ionic liquids and oligo(ethylene oxide) doped with LiTFSI.
    Borodin O; Smith GD; Geiculescu O; Creager SE; Hallac B; DesMarteau D
    J Phys Chem B; 2006 Nov; 110(47):24266-74. PubMed ID: 17125400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A joint theoretical/experimental study of the structure, dynamics, and Li+ transport in bis([tri]fluoro[methane]sulfonyl)imide [T]FSI-based ionic liquids.
    Solano CJ; Jeremias S; Paillard E; Beljonne D; Lazzaroni R
    J Chem Phys; 2013 Jul; 139(3):034502. PubMed ID: 23883042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the coordination of Zn
    Sessa F; Migliorati V; Serva A; Lapi A; Aquilanti G; Mancini G; D'Angelo P
    Phys Chem Chem Phys; 2018 Jan; 20(4):2662-2675. PubMed ID: 29319089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of organic solvents on Li+ ion solvation and transport in ionic liquid electrolytes: a molecular dynamics simulation study.
    Li Z; Borodin O; Smith GD; Bedrov D
    J Phys Chem B; 2015 Feb; 119(7):3085-96. PubMed ID: 25592777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the water content on the structure and physicochemical properties of an ionic liquid and its Li+ mixture.
    Martins VL; Nicolau BG; Urahata SM; Ribeiro MC; Torresi RM
    J Phys Chem B; 2013 Jul; 117(29):8782-92. PubMed ID: 23815781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of lithium cations on dynamics and structure of room temperature ionic liquids.
    Lawler C; Fayer MD
    J Phys Chem B; 2013 Aug; 117(33):9768-74. PubMed ID: 23879633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of n-hexane at 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide interface.
    Lísal M; Izák P
    J Chem Phys; 2013 Jul; 139(1):014704. PubMed ID: 23822317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkali cation extraction by calix[4]crown-6 to room-temperature ionic liquids. The effect of solvent anion and humidity investigated by molecular dynamics simulations.
    Sieffert N; Wipff G
    J Phys Chem A; 2006 Jan; 110(3):1106-17. PubMed ID: 16420015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.