BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 24070392)

  • 1. Multilayer dual-polymer-coated upconversion nanoparticles for multimodal imaging and serum-enhanced gene delivery.
    He L; Feng L; Cheng L; Liu Y; Li Z; Peng R; Li Y; Guo L; Liu Z
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10381-8. PubMed ID: 24070392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer-coated NaYF₄:Yb³⁺, Er³⁺ upconversion nanoparticles for charge-dependent cellular imaging.
    Jin J; Gu YJ; Man CW; Cheng J; Xu Z; Zhang Y; Wang H; Lee VH; Cheng SH; Wong WT
    ACS Nano; 2011 Oct; 5(10):7838-47. PubMed ID: 21905691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione-sensitive RGD-poly(ethylene glycol)-SS-polyethylenimine for intracranial glioblastoma targeted gene delivery.
    Lei Y; Wang J; Xie C; Wagner E; Lu W; Li Y; Wei X; Dong J; Liu M
    J Gene Med; 2013; 15(8-9):291-305. PubMed ID: 24038955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PEGylated PEI-based biodegradable polymers as non-viral gene vectors.
    Huang FW; Wang HY; Li C; Wang HF; Sun YX; Feng J; Zhang XZ; Zhuo RX
    Acta Biomater; 2010 Nov; 6(11):4285-95. PubMed ID: 20601231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery.
    Li C; Yang D; Ma P; Chen Y; Wu Y; Hou Z; Dai Y; Zhao J; Sui C; Lin J
    Small; 2013 Dec; 9(24):4150-9. PubMed ID: 23843254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low molecular weight linear polyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine triblock copolymers: synthesis, characterization, and in vitro gene transfer properties.
    Zhong Z; Feijen J; Lok MC; Hennink WE; Christensen LV; Yockman JW; Kim YH; Kim SW
    Biomacromolecules; 2005; 6(6):3440-8. PubMed ID: 16283777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient gene delivery and multimodal imaging by lanthanide-based upconversion nanoparticles.
    Wang L; Liu J; Dai Y; Yang Q; Zhang Y; Yang P; Cheng Z; Lian H; Li C; Hou Z; Ma P; Lin J
    Langmuir; 2014 Nov; 30(43):13042-51. PubMed ID: 25291048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted gene delivery mediated by folate-polyethylenimine-block-poly(ethylene glycol) with receptor selectivity.
    Cheng H; Zhu JL; Zeng X; Jing Y; Zhang XZ; Zhuo RX
    Bioconjug Chem; 2009 Mar; 20(3):481-7. PubMed ID: 19191579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(ethylene oxide) grafted with short polyethylenimine gives DNA polyplexes with superior colloidal stability, low cytotoxicity, and potent in vitro gene transfection under serum conditions.
    Zheng M; Zhong Z; Zhou L; Meng F; Peng R; Zhong Z
    Biomacromolecules; 2012 Mar; 13(3):881-8. PubMed ID: 22339316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEG- and PDMAEG-graft-modified branched PEI as novel gene vector: synthesis, characterization and gene transfection.
    Wen Y; Pan S; Luo X; Zhang W; Shen Y; Feng M
    J Biomater Sci Polym Ed; 2010; 21(8-9):1103-26. PubMed ID: 20507711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layer-by-layer assembled PEI-based vector with the upconversion luminescence marker for gene delivery.
    Wang Y; Cao P; Li S; Zhang X; Hu J; Yang M; Yao S; Gao F; Xia A; Shen J; Huang X
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2504-2509. PubMed ID: 30208518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy.
    Wang C; Cheng L; Liu Z
    Biomaterials; 2011 Feb; 32(4):1110-20. PubMed ID: 20965564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cell-specific poly(ethylene glycol) derivative with a wheat-like structure for efficient gene delivery.
    Li H; Sun X; Zhao D; Zhang Z
    Mol Pharm; 2012 Nov; 9(11):2974-85. PubMed ID: 22957964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene delivery of PEI incorporating with functional block copolymer via non-covalent assembly strategy.
    Hu Y; Zhou D; Li C; Zhou H; Chen J; Zhang Z; Guo T
    Acta Biomater; 2013 Feb; 9(2):5003-12. PubMed ID: 23036947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A strategy to improve serum-tolerant transfection activity of polycation vectors by surface hydroxylation.
    Luo XH; Huang FW; Qin SY; Wang HF; Feng J; Zhang XZ; Zhuo RX
    Biomaterials; 2011 Dec; 32(36):9925-39. PubMed ID: 21930297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced gene transfection efficiency in CD13-positive vascular endothelial cells with targeted poly(lactic acid)-poly(ethylene glycol) nanoparticles through caveolae-mediated endocytosis.
    Liu C; Yu W; Chen Z; Zhang J; Zhang N
    J Control Release; 2011 Apr; 151(2):162-75. PubMed ID: 21376765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyethyleneimine-poly(ethylene glycol)-star-copolymers as efficient and biodegradable vectors for mammalian cell transfection.
    Ladewig K; Xu ZP; Gray P; Max Lu GQ
    J Biomed Mater Res A; 2014 Jul; 102(7):2137-46. PubMed ID: 23893894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ethylene glycol)-grafted polyethylenimine modified with G250 monoclonal antibody for tumor gene therapy.
    Duan Y; Yang C; Zhang Z; Liu J; Zheng J; Kong D
    Hum Gene Ther; 2010 Feb; 21(2):191-8. PubMed ID: 19788387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery.
    Ping Y; Liu C; Zhang Z; Liu KL; Chen J; Li J
    Biomaterials; 2011 Nov; 32(32):8328-41. PubMed ID: 21840593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic modification of low molecular weight polyethylenimine for improved gene transfection.
    Teo PY; Yang C; Hedrick JL; Engler AC; Coady DJ; Ghaem-Maghami S; George AJ; Yang YY
    Biomaterials; 2013 Oct; 34(32):7971-9. PubMed ID: 23880339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.