BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 24070486)

  • 1. A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates.
    Yang XH; Ling J; Peng J; Cao QE; Ding ZT; Bian LC
    Anal Chim Acta; 2013 Oct; 798():74-81. PubMed ID: 24070486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric iodide recognition and sensing by citrate-stabilized core/shell Cu@Au nanoparticles.
    Zhang J; Xu X; Yang C; Yang F; Yang X
    Anal Chem; 2011 May; 83(10):3911-7. PubMed ID: 21449559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual colorimetric detection of berberine hydrochloride with silver nanoparticles.
    Ling J; Sang Y; Huang CZ
    J Pharm Biomed Anal; 2008 Aug; 47(4-5):860-4. PubMed ID: 18513909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione and L-cysteine modified silver nanoplates-based colorimetric assay for a simple, fast, sensitive and selective determination of nickel.
    Kiatkumjorn T; Rattanarat P; Siangproh W; Chailapakul O; Praphairaksit N
    Talanta; 2014 Oct; 128():215-20. PubMed ID: 25059151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pH-dependent interaction of silver nanoparticles and hydrogen peroxide: a new platform for visual detection of iodide with ultra-sensitivity.
    Wang GL; Zhu XY; Dong YM; Jiao HJ; Wu XM; Li ZJ
    Talanta; 2013 Mar; 107():146-53. PubMed ID: 23598205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virgin silver nanoparticles as colorimetric nanoprobe for simultaneous detection of iodide and bromide ion in aqueous medium.
    Bothra S; Kumar R; Pati RK; Kuwar A; Choi HJ; Sahoo SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():122-6. PubMed ID: 25950637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new rapid colorimetric detection method of Al³⁺ with high sensitivity and excellent selectivity based on a new mechanism of aggregation of smaller etched silver nanoparticles.
    Yang N; Gao Y; Zhang Y; Shen Z; Wu A
    Talanta; 2014 May; 122():272-7. PubMed ID: 24720995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles.
    Kumar N; Seth R; Kumar H
    Anal Biochem; 2014 Jul; 456():43-9. PubMed ID: 24727351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An irreversible temperature indicator fabricated by citrate induced face-to-face assembly of silver triangular nanoplates.
    Zhang XQ; Ling J; Liu CJ; Tan YH; Chen LQ; Cao QE
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():657-662. PubMed ID: 30184792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free silver nanoparticles for the naked eye detection of entecavir.
    Gao M; Lin R; Li L; Jiang L; Ye B; He H; Qiu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 126():178-83. PubMed ID: 24607467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A colorimetric assay for measuring iodide using Au@Ag core-shell nanoparticles coupled with Cu(2+).
    Zeng J; Cao Y; Lu CH; Wang XD; Wang Q; Wen CY; Qu JB; Yuan C; Yan ZF; Chen X
    Anal Chim Acta; 2015 Sep; 891():269-76. PubMed ID: 26388386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Citrate-capped silver nanoparticles as a probe for sensitive and selective colorimetric and spectrophotometric sensing of creatinine in human urine.
    Alula MT; Karamchand L; Hendricks NR; Blackburn JM
    Anal Chim Acta; 2018 May; 1007():40-49. PubMed ID: 29405987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorimetric determination of o-phenylenediamine in water samples based on the formation of silver nanoparticles as a colorimetric probe.
    Li N; Gu Y; Gao M; Wang Z; Xiao D; Li Y; Lin R; He H
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():328-33. PubMed ID: 25615678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive, label-free colorimetric assay of trypsin using silver nanoparticles.
    Miao P; Liu T; Li X; Ning L; Yin J; Han K
    Biosens Bioelectron; 2013 Nov; 49():20-4. PubMed ID: 23708813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel fluorometric and colorimetric sensor for iodide determination using DNA-templated gold/silver nanoclusters.
    Li Z; Liu R; Xing G; Wang T; Liu S
    Biosens Bioelectron; 2017 Oct; 96():44-48. PubMed ID: 28460331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorimetric chiral recognition of D/L-phenylalanine based on triangular silver nanoplates.
    Wu P; Hu F; Wang R; Gao L; Huang T; Xin Y; He H
    Amino Acids; 2018 Sep; 50(9):1269-1278. PubMed ID: 29961142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorimetric detection of riboflavin by silver nanoparticles capped with β-cyclodextrin-grafted citrate.
    Ma Q; Song J; Zhang S; Wang M; Guo Y; Dong C
    Colloids Surf B Biointerfaces; 2016 Dec; 148():66-72. PubMed ID: 27591572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver nanoplates-based colorimetric iodide recognition and sensing using sodium thiosulfate as a sensitizer.
    Hou X; Chen S; Tang J; Xiong Y; Long Y
    Anal Chim Acta; 2014 May; 825():57-62. PubMed ID: 24767151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallic nanoparticles bioassay for Enterobacter cloacae P99 beta-lactamase activity and inhibitor screening.
    Liu R; Teo W; Tan S; Feng H; Padmanabhan P; Xing B
    Analyst; 2010 May; 135(5):1031-6. PubMed ID: 20419253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual determination of trace cysteine based on promoted corrosion of triangular silver nanoplates by sodium thiosulfate.
    Hou XY; Chen S; Tang J; Long YF
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():285-9. PubMed ID: 24556137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.