These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24070590)

  • 21. Dynamic vocal fold parameters with changing adduction in ex-vivo hemilarynx experiments.
    Döllinger M; Berry DA; Kniesburges S
    J Acoust Soc Am; 2016 May; 139(5):2372. PubMed ID: 27250133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Visualization of the vibratory movements of the vocal cords under asymmetrical conditions].
    Ouaknine M; Fernandes M; Giovanni A
    Rev Laryngol Otol Rhinol (Bord); 2000; 121(5):297-300. PubMed ID: 11387652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of subglottal resonance upon vocal fold vibration.
    Austin SF; Titze IR
    J Voice; 1997 Dec; 11(4):391-402. PubMed ID: 9422272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Medial surface dynamics of an in vivo canine vocal fold during phonation.
    Döllinger M; Berry DA; Berke GS
    J Acoust Soc Am; 2005 May; 117(5):3174-83. PubMed ID: 15957785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Young's modulus of canine vocal fold cover layers.
    Chhetri DK; Rafizadeh S
    J Voice; 2014 Jul; 28(4):406-10. PubMed ID: 24491497
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vocal fold vibration in simulated head voice phonation in excised canine larynges.
    Shiotani A; Fukuda H; Kawaida M; Kanzaki J
    Eur Arch Otorhinolaryngol; 1996; 253(6):356-63. PubMed ID: 8858261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic nanomechanical analysis of the vocal fold structure in excised larynges.
    Dion GR; Coelho PG; Teng S; Janal MN; Amin MR; Branski RC
    Laryngoscope; 2017 Jul; 127(7):E225-E230. PubMed ID: 27873325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Excised human larynx in N-vinyl-2-pyrrolidone-embalmed cadavers can produce voiced sound by pliable vocal fold vibration.
    Miyamoto M; Nagase M; Watanabe I; Nakagawa H; Karita K; Tsuji DH; Montagnoli AN; Matsumura G; Saito K
    Anat Sci Int; 2022 Sep; 97(4):347-357. PubMed ID: 35113344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical modeling of the three-dimensional aspects of human vocal fold dynamics.
    Yang A; Lohscheller J; Berry DA; Becker S; Eysholdt U; Voigt D; Döllinger M
    J Acoust Soc Am; 2010 Feb; 127(2):1014-31. PubMed ID: 20136223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A computational study of depth of vibration into vocal fold tissues.
    Palaparthi A; Smith S; Mau T; Titze IR
    J Acoust Soc Am; 2019 Feb; 145(2):881. PubMed ID: 30823802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinear source-filter coupling due to the addition of a simplified vocal tract model for excised larynx experiments.
    Smith BL; Nemcek SP; Swinarski KA; Jiang JJ
    J Voice; 2013 May; 27(3):261-6. PubMed ID: 23490131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative second harmonic generation imaging of leporine, canine, and porcine vocal fold collagen.
    Devine EE; Liu Y; Keikhosravi A; Eliceiri KW; Jiang JJ
    Laryngoscope; 2019 Nov; 129(11):2549-2556. PubMed ID: 30628080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A rat excised larynx model of vocal fold scar.
    Welham NV; Montequin DW; Tateya I; Tateya T; Choi SH; Bless DM
    J Speech Lang Hear Res; 2009 Aug; 52(4):1008-20. PubMed ID: 19641079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lubrication mechanism of the larynx during phonation: an experiment in excised canine larynges.
    Nakagawa H; Fukuda H; Kawaida M; Shiotani A; Kanzaki J
    Folia Phoniatr Logop; 1998; 50(4):183-94. PubMed ID: 9819480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vocal power and pressure-flow relationships in excised tiger larynges.
    Titze IR; Fitch WT; Hunter EJ; Alipour F; Montequin D; Armstrong DL; McGee J; Walsh EJ
    J Exp Biol; 2010 Nov; 213(Pt 22):3866-73. PubMed ID: 21037066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonlinear behavior of vocal fold vibration: the role of coupling between the vocal folds.
    Giovanni A; Ouaknine M; Guelfucci R; Yu T; Zanaret M; Triglia JM
    J Voice; 1999 Dec; 13(4):465-76. PubMed ID: 10622513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the medial surface of the vocal folds.
    Berry DA; Clark MJ; Montequin DW; Titze IR
    Ann Otol Rhinol Laryngol; 2001 May; 110(5 Pt 1):470-7. PubMed ID: 11372933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatially varying properties of the vocal ligament contribute to its eigenfrequency response.
    Kelleher JE; Zhang K; Siegmund T; Chan RW
    J Mech Behav Biomed Mater; 2010 Nov; 3(8):600-9. PubMed ID: 20826366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic Biomechanical Analysis of Vocal Folds Using Pipette Aspiration Technique.
    Scheible F; Lamprecht R; Semmler M; Sutor A
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33919359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.