BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 24070672)

  • 1. 3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs.
    Wang A; Eggermont J; Dekker N; de Koning PJ; Reiber JH; Dijkstra J
    Comput Med Imaging Graph; 2014 Mar; 38(2):113-22. PubMed ID: 24070672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic stent strut detection in intravascular optical coherence tomographic pullback runs.
    Wang A; Eggermont J; Dekker N; Garcia-Garcia HM; Pawar R; Reiber JH; Dijkstra J
    Int J Cardiovasc Imaging; 2013 Jan; 29(1):29-38. PubMed ID: 22618433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three dimensional reconstruction of coronary artery stents from optical coherence tomography: experimental validation and clinical feasibility.
    Wu W; Khan B; Sharzehee M; Zhao S; Samant S; Watanabe Y; Murasato Y; Mickley T; Bicek A; Bliss R; Valenzuela T; Iaizzo PA; Makadia J; Panagopoulos A; Burzotta F; Samady H; Brilakis ES; Dangas GD; Louvard Y; Stankovic G; Dubini G; Migliavacca F; Kassab GS; Edelman ER; Chiastra C; Chatzizisis YS
    Sci Rep; 2021 Jun; 11(1):12252. PubMed ID: 34112841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment with optical coherence tomography of a new strategy for bifurcational lesion treatment: the Tryton Side-Branch Stent.
    Ferrante G; Kaplan AV; Di Mario C
    Catheter Cardiovasc Interv; 2009 Jan; 73(1):69-72. PubMed ID: 19089962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of frequency-domain optical coherence tomography guidance for optimal coronary stent implantation in comparison with intravascular ultrasound guidance.
    Habara M; Nasu K; Terashima M; Kaneda H; Yokota D; Ko E; Ito T; Kurita T; Tanaka N; Kimura M; Ito T; Kinoshita Y; Tsuchikane E; Asakura K; Asakura Y; Katoh O; Suzuki T
    Circ Cardiovasc Interv; 2012 Apr; 5(2):193-201. PubMed ID: 22456026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method to assess coronary artery bifurcations by OCT: cut-plane analysis for side-branch ostial assessment from a main-vessel pullback.
    Karanasos A; Tu S; van Ditzhuijzen NS; Ligthart JM; Witberg K; Van Mieghem N; van Geuns RJ; de Jaegere P; Zijlstra F; Reiber JH; Regar E
    Eur Heart J Cardiovasc Imaging; 2015 Feb; 16(2):177-89. PubMed ID: 25227268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification.
    Okamura T; Onuma Y; García-García HM; Regar E; Wykrzykowska JJ; Koolen J; Thuesen L; Windecker S; Whitbourn R; McClean DR; Ormiston JA; Serruys PW;
    JACC Cardiovasc Interv; 2010 Aug; 3(8):836-44. PubMed ID: 20723856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neointimal coverage on drug-eluting stent struts crossing side-branch vessels using optical coherence tomography.
    Her AY; Lee BK; Shim JM; Kim JS; Kim BK; Ko YG; Choi D; Jang Y; Hong MK
    Am J Cardiol; 2010 Jun; 105(11):1565-9. PubMed ID: 20494663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the influence of cardiac motion on the accuracy and reproducibility of longitudinal measurements and the corresponding image quality in optical frequency domain imaging: an ex vivo investigation of the optimal pullback speed.
    Koyama K; Yoneyama K; Mitarai T; Kuwata S; Kongoji K; Harada T; Akashi YJ
    Int J Cardiovasc Imaging; 2015 Aug; 31(6):1115-23. PubMed ID: 25971841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Side Branch Ostium Detection and Main Vascular Segmentation in Intravascular Optical Coherence Tomography Images.
    Cao Y; Jin Q; Chen Y; Yin Q; Qin X; Li J; Zhu R; Zhao W
    IEEE J Biomed Health Inform; 2018 Sep; 22(5):1531-1539. PubMed ID: 29990134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new 3-D automated computational method to evaluate in-stent neointimal hyperplasia in in-vivo intravascular optical coherence tomography pullbacks.
    Gurmeric S; Isguder GG; Carlier S; Unal G
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):776-85. PubMed ID: 20426182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic three-dimensional registration of intravascular optical coherence tomography images.
    Ughi GJ; Adriaenssens T; Larsson M; Dubois C; Sinnaeve PR; Coosemans M; Desmet W; D'hooge J
    J Biomed Opt; 2012 Feb; 17(2):026005. PubMed ID: 22463037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully automated side branch detection in intravascular optical coherence tomography pullback runs.
    Wang A; Eggermont J; Reiber JH; Dijkstra J
    Biomed Opt Express; 2014 Sep; 5(9):3160-73. PubMed ID: 25401029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-speed intracoronary optical frequency domain imaging: implications for three-dimensional reconstruction and quantitative analysis.
    Okamura T; Onuma Y; Garcia-Garcia HM; Bruining N; Serruys PW
    EuroIntervention; 2012 Feb; 7(10):1216-26. PubMed ID: 22334321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automatic three-dimensional quantitative analysis of intracoronary optical coherence tomography: method and Validation.
    Sihan K; Botha C; Post F; de Winter S; Gonzalo N; Regar E; Serruys PJ; Hamers R; Bruining N
    Catheter Cardiovasc Interv; 2009 Dec; 74(7):1058-65. PubMed ID: 19521990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Healing responses after bifurcation stenting with the dedicated TRYTON Side-Branch Stent™ in combination with XIENCE-V™ stents: a clinical, angiography, fractional flow reserve, and optical coherence tomography study: the PYTON (Prospective evaluation of the TRYTON Side-Branch Stent™ with an additional XIENCE-v™ everolimus-eluting stent in coronary bifurcation lesions) study.
    Dubois C; Adriaenssens T; Ughi G; Wiyono S; Bennett J; Coosemans M; Ferdinande B; Sinnaeve P; D'hooge J; Desmet W
    Catheter Cardiovasc Interv; 2013 Feb; 81(3):E155-64. PubMed ID: 22745031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reproducibility of coronary Fourier domain optical coherence tomography: quantitative analysis of in vivo stented coronary arteries using three different software packages.
    Okamura T; Gonzalo N; Gutiérrez-Chico JL; Serruys PW; Bruining N; de Winter S; Dijkstra J; Commossaris KH; van Geuns RJ; van Soest G; Ligthart J; Regar E
    EuroIntervention; 2010 Aug; 6(3):371-9. PubMed ID: 20884417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical coherence tomography at follow-up after percutaneous coronary intervention: relationship between procedural dissections, stent strut malapposition and stent healing.
    Radu M; Jørgensen E; Kelbæk H; Helqvist S; Skovgaard L; Saunamäki K
    EuroIntervention; 2011 Jul; 7(3):353-61. PubMed ID: 21729838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delayed coverage in malapposed and side-branch struts with respect to well-apposed struts in drug-eluting stents: in vivo assessment with optical coherence tomography.
    Gutiérrez-Chico JL; Regar E; Nüesch E; Okamura T; Wykrzykowska J; di Mario C; Windecker S; van Es GA; Gobbens P; Jüni P; Serruys PW
    Circulation; 2011 Aug; 124(5):612-23. PubMed ID: 21768536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic detection of bioresorbable vascular scaffold struts in intravascular optical coherence tomography pullback runs.
    Wang A; Nakatani S; Eggermont J; Onuma Y; Garcia-Garcia HM; Serruys PW; Reiber JH; Dijkstra J
    Biomed Opt Express; 2014 Oct; 5(10):3589-602. PubMed ID: 25360375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.