These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 24070780)

  • 21. Fatigue fracture of the stem-cement interface with a clamped cantilever beam test.
    Heuer DA; Mann KA
    J Biomech Eng; 2000 Dec; 122(6):647-51. PubMed ID: 11192387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect on the fatigue strength of bone cement of adding sodium fluoride.
    Minari C; Baleani M; Cristofolini L; Baruffaldi F
    Proc Inst Mech Eng H; 2001; 215(2):251-3. PubMed ID: 11382084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoparticulate fillers improve the mechanical strength of bone cement.
    Gomoll AH; Fitz W; Scott RD; Thornhill TS; Bellare A
    Acta Orthop; 2008 Jun; 79(3):421-7. PubMed ID: 18622848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A procedure and criterion for bone cement fracture toughness tests.
    Guandalini L; Baleani M; Viceconti M
    Proc Inst Mech Eng H; 2004; 218(6):445-50. PubMed ID: 15648668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fatigue crack propagation under variable amplitude loading in PMMA and bone cement.
    Evans SL
    J Mater Sci Mater Med; 2007 Sep; 18(9):1711-7. PubMed ID: 17483908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Creep and fatigue behavior of a novel 2-component paste-like formulation of acrylic bone cements.
    Köster U; Jaeger R; Bardts M; Wahnes C; Büchner H; Kühn KD; Vogt S
    J Mater Sci Mater Med; 2013 Jun; 24(6):1395-406. PubMed ID: 23563979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vertebroplasty comparing injectable calcium phosphate cement compared with polymethylmethacrylate in a unique canine vertebral body large defect model.
    Turner TM; Urban RM; Singh K; Hall DJ; Renner SM; Lim TH; Tomlinson MJ; An HS
    Spine J; 2008; 8(3):482-7. PubMed ID: 18455113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of porosity on the fatigue performance of polymethyl methacrylate bone cement: an analytical investigation.
    Evans SL
    Proc Inst Mech Eng H; 2006 Jan; 220(1):1-10. PubMed ID: 16459441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modification of acrylic bone cement with mesoporous silica nanoparticles: effects on mechanical, fatigue and absorption properties.
    Slane J; Vivanco J; Meyer J; Ploeg HL; Squire M
    J Mech Behav Biomed Mater; 2014 Jan; 29():451-61. PubMed ID: 24211354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compressive fatigue properties of a commercially available acrylic bone cement for vertebroplasty.
    Ajaxon I; Persson C
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1199-207. PubMed ID: 24659042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micromechanical characterisation of failure in acrylic bone cement: the effect of barium sulphate agglomerates.
    Shearwood-Porter N; Browne M; Sinclair I
    J Mech Behav Biomed Mater; 2012 Sep; 13():85-92. PubMed ID: 22842279
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Orthopaedic bone cement: do we know what we are using?
    Bridgens J; Davies S; Tilley L; Norman P; Stockley I
    J Bone Joint Surg Br; 2008 May; 90(5):643-7. PubMed ID: 18450633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of vancomycin, cefazolin and test conditions on the wear behavior of bone cement.
    Sanz-Ruiz P; Paz E; Abenojar J; Carlos del Real J; Vaquero J; Forriol F
    J Arthroplasty; 2014 Jan; 29(1):16-22. PubMed ID: 23702270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of moisture absorption on the fatigue crack propagation resistance of acrylic bone cement.
    Schmitt S; Krzypow DJ; Rimnac CM
    Biomed Tech (Berl); 2004 Mar; 49(3):61-5. PubMed ID: 15106900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of fabrication pressure on the fatigue performance of Cemex XL acrylic bone cement.
    Lewis G; Janna SI
    Biomaterials; 2004; 25(7-8):1415-20. PubMed ID: 14643616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A small punch test technique for characterizing the elastic modulus and fracture behavior of PMMA bone cement used in total joint replacement.
    Giddings VL; Kurtz SM; Jewett CW; Foulds JR; Edidin AA
    Biomaterials; 2001 Jul; 22(13):1875-81. PubMed ID: 11396893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fatigue and biocompatibility properties of a poly(methyl methacrylate) bone cement with multi-walled carbon nanotubes.
    Ormsby R; McNally T; O'Hare P; Burke G; Mitchell C; Dunne N
    Acta Biomater; 2012 Mar; 8(3):1201-12. PubMed ID: 22023747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A fractographic analysis of in vivo poly(methyl methacrylate) bone cement failure mechanisms.
    Topoleski LD; Ducheyne P; Cuckler JM
    J Biomed Mater Res; 1990 Feb; 24(2):135-54. PubMed ID: 2329111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical characterization of bone graft substitute ceramic cements.
    Drosos GI; Babourda E; Magnissalis EA; Giatromanolaki A; Kazakos K; Verettas DA
    Injury; 2012 Mar; 43(3):266-71. PubMed ID: 21371707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads.
    Boger A; Bohner M; Heini P; Schwieger K; Schneider E
    Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.