These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 240711)
21. The effects of ionic conditions, temperature, and chemical modification on the fluorescence of myosin during the steady state of ATP hydrolysis. A comparison of the fluorescnece and electron spin resonance spectra of the spin-labeled enzyme. Seidel JC J Biol Chem; 1975 Jul; 250(14):5681-7. PubMed ID: 237927 [TBL] [Abstract][Full Text] [Related]
22. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state. Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175 [TBL] [Abstract][Full Text] [Related]
23. The sulfhydryl groups involved in the active site of myosin B adenosinetriphosphatase. II. Effect of modification of the Sa thiol group on superprecipitation and clearing. Yamashita T; Horigome T J Biochem; 1977 Apr; 81(4):933-9. PubMed ID: 195936 [TBL] [Abstract][Full Text] [Related]
24. Effect of metal cations on the conformation of myosin subfragment-1-ADP-phosphate analog complexes: a near-UV circular dichroism study. Peyser YM; Ajtai K; Werber MM; Burghardt TP; Muhlrad A Biochemistry; 1997 Apr; 36(17):5170-8. PubMed ID: 9136878 [TBL] [Abstract][Full Text] [Related]
25. The effects of substrate concentration on the Mg-adenosine triphosphatase activity of myosin. Nihei T; Filipenko CA Can J Biochem; 1975 Dec; 53(12):1282-7. PubMed ID: 130198 [TBL] [Abstract][Full Text] [Related]
26. A kinetic study of the K+ activated ATPase of myosin subfragment-1. Kelemen GS; Pintér K Acta Biochim Biophys Acad Sci Hung; 1980; 15(1):21-8. PubMed ID: 6450508 [TBL] [Abstract][Full Text] [Related]
27. The magnesium ion-dependent adenosine triphosphatase of myosin. Two-step processes of adenosine triphosphate association and adenosine diphosphate dissociation. Bagshaw CR; Eccleston JF; Eckstein F; Goody RS; Gutfreund H; Trentham DR Biochem J; 1974 Aug; 141(2):351-64. PubMed ID: 4281654 [TBL] [Abstract][Full Text] [Related]
28. Reactivity of essential thiols of myosin. Chemical probes of the activated state. Reisler E; Burke M; Harrington WF Biochemistry; 1977 Nov; 16(24):5187-91. PubMed ID: 144520 [TBL] [Abstract][Full Text] [Related]
29. Separation of myosin subfragment 1 into two fractions, one having the burst site and the other having the non-burst site. Taniguchi S; Tawada K J Biochem; 1976 Oct; 80(4):853-60. PubMed ID: 137898 [TBL] [Abstract][Full Text] [Related]
30. Magnesium ion dependent adenosine triphosphatase activity of heavy meromyosin as a function of temperature between +20 and -15 degrees C. Béchet JJ; Bréda C; Guinand S; Hill M; d'Albis A Biochemistry; 1979 Sep; 18(19):4080-9. PubMed ID: 158379 [TBL] [Abstract][Full Text] [Related]
31. Nucleotide-induced change of the interaction between the 20- and 26-kilodalton heavy-chain segments of myosin adenosinetriphosphatase revealed by chemical cross-linking via the reactive thiol SH2. Hiratsuka T Biochemistry; 1987 Jun; 26(11):3168-73. PubMed ID: 2955809 [TBL] [Abstract][Full Text] [Related]
32. Purification and characterization of myosin from the clonal rat glial cell strain C-6. Ash JF J Biol Chem; 1975 May; 250(9):3560-6. PubMed ID: 123531 [TBL] [Abstract][Full Text] [Related]
33. Reaction mechanism of the magnesium ion-dependent adenosine triphosphatase of frog muscle myosin and subfragment 1. Ferenczi MA; Homsher E; Simmons RM; Trentham DR Biochem J; 1978 Apr; 171(1):165-75. PubMed ID: 148277 [TBL] [Abstract][Full Text] [Related]
34. Comparison of Mg2+ vs Ca2+, K+ and actin-activation of myosin after trinitrophenylation. Wikman-Coffelt J; Higuchi M; Fabian F; Mason DT Res Commun Chem Pathol Pharmacol; 1979 Sep; 25(3):565-75. PubMed ID: 41296 [TBL] [Abstract][Full Text] [Related]
35. Temperature dependence of the decay of the UV absorption difference spectrum of heavy meromyosin induced by adenosine triphosphate and inosine triphosphate. Morita F; Ishigami F J Biochem; 1977 Feb; 81(2):305-12. PubMed ID: 14941 [TBL] [Abstract][Full Text] [Related]
36. Temperature and ligand dependence of conformation and helical order in myosin filaments. Xu S; Offer G; Gu J; White HD; Yu LC Biochemistry; 2003 Jan; 42(2):390-401. PubMed ID: 12525166 [TBL] [Abstract][Full Text] [Related]
37. Ca2+-sensitivity of actomyosin ATPase purified from Physarum polycephalum. Kato T; Tonomura Y J Biochem; 1975 Jun; 77(6):1127-34. PubMed ID: 131790 [TBL] [Abstract][Full Text] [Related]
38. The substructure of myosin and the reaction mechanism of its adenosine triphosphatase. Tonomura Y; Inoue A Mol Cell Biochem; 1974 Dec; 5(3):127-43. PubMed ID: 4280507 [No Abstract] [Full Text] [Related]
39. Mechanism of adenosinetriphosphatase activity of trinitrophenylated myosin subfragment 1. Muhlrad A Biochemistry; 1983 Jul; 22(15):3653-60. PubMed ID: 6225457 [TBL] [Abstract][Full Text] [Related]
40. [Role of bivalent and monovalent cations in the functioning of myosin ATPase]. Levitskiĭ DI; Poglazov BF Biokhimiia; 1980 Dec; 45(12):2233-42. PubMed ID: 6454445 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]