These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24071548)

  • 21. The effect of lateral stabilization on walking in young and old adults.
    Dean JC; Alexander NB; Kuo AD
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1919-26. PubMed ID: 18018687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age-related differences in stepping stability following a sudden gait perturbation are associated with lower limb eccentric control of the perturbed limb.
    Jeon W; Whitall J; Alissa N; Westlake K
    Exp Gerontol; 2022 Oct; 167():111917. PubMed ID: 35963451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive Control of Dynamic Balance across the Adult Lifespan.
    Vervoort D; Buurke TJW; Vuillerme N; Hortobágyi T; DEN Otter R; Lamoth CJC
    Med Sci Sports Exerc; 2020 Oct; 52(10):2270-2277. PubMed ID: 32301854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic stability control in younger and older adults during stair descent.
    Bosse I; Oberländer KD; Savelberg HH; Meijer K; Brüggemann GP; Karamanidis K
    Hum Mov Sci; 2012 Dec; 31(6):1560-70. PubMed ID: 22853941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of unexpected mechanical perturbations during treadmill walking on spatiotemporal gait parameters, and the dynamic stability measures by which to quantify postural response.
    Madehkhaksar F; Klenk J; Sczuka K; Gordt K; Melzer I; Schwenk M
    PLoS One; 2018; 13(4):e0195902. PubMed ID: 29672558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deficient recovery response and adaptive feedback potential in dynamic gait stability in unilateral peripheral vestibular disorder patients.
    McCrum C; Eysel-Gosepath K; Epro G; Meijer K; Savelberg HH; Brüggemann GP; Karamanidis K
    Physiol Rep; 2014 Dec; 2(12):. PubMed ID: 25501424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations.
    Hak L; Houdijk H; Steenbrink F; Mert A; van der Wurff P; Beek PJ; van Dieën JH
    Gait Posture; 2012 Jun; 36(2):260-4. PubMed ID: 22464635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aging effect on step adjustments and stability control in visually perturbed gait initiation.
    Sun R; Cui C; Shea JB
    Gait Posture; 2017 Oct; 58():268-273. PubMed ID: 28837917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic stability differences in fall-prone and healthy adults.
    Granata KP; Lockhart TE
    J Electromyogr Kinesiol; 2008 Apr; 18(2):172-8. PubMed ID: 17686633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Older adults adopted more cautious gait patterns when walking in socks than barefoot.
    Tsai YJ; Lin SI
    Gait Posture; 2013 Jan; 37(1):88-92. PubMed ID: 22867560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reliability and Minimum Detectable Change of Temporal-Spatial, Kinematic, and Dynamic Stability Measures during Perturbed Gait.
    Rábago CA; Dingwell JB; Wilken JM
    PLoS One; 2015; 10(11):e0142083. PubMed ID: 26535580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exposure to trips and slips with increasing unpredictability while walking can improve balance recovery responses with minimum predictive gait alterations.
    Okubo Y; Brodie MA; Sturnieks DL; Hicks C; Carter H; Toson B; Lord SR
    PLoS One; 2018; 13(9):e0202913. PubMed ID: 30226887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Obstacle clearance and prevention from falling in the bipedally walking Japanese monkey, Macaca fuscata.
    Mori F; Nakajima K; Tachibana A; Mori S
    Age Ageing; 2006 Sep; 35 Suppl 2():ii19-ii23. PubMed ID: 16926198
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinematic measures for assessing gait stability in elderly individuals: a systematic review.
    Hamacher D; Singh NB; Van Dieën JH; Heller MO; Taylor WR
    J R Soc Interface; 2011 Dec; 8(65):1682-98. PubMed ID: 21880615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of foot clearance parameters as a precursor to forecasting the risk of tripping and falling.
    Lai DT; Taylor SB; Begg RK
    Hum Mov Sci; 2012 Apr; 31(2):271-83. PubMed ID: 21035220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of gait speed on stability of walking revealed by simulated response to tripping perturbation.
    Klemetti R; Moilanen P; Avela J; Timonen J
    Gait Posture; 2014; 39(1):534-9. PubMed ID: 24091248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A perturbation-based balance training program for older adults: study protocol for a randomised controlled trial.
    Mansfield A; Peters AL; Liu BA; Maki BE
    BMC Geriatr; 2007 May; 7():12. PubMed ID: 17540020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is angular momentum in the horizontal plane during gait a controlled variable?
    Thielemans V; Meyns P; Bruijn SM
    Hum Mov Sci; 2014 Apr; 34():205-16. PubMed ID: 24703335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does aging with a cortical lesion increase fall-risk: Examining effect of age versus stroke on intensity modulation of reactive balance responses from slip-like perturbations.
    Patel PJ; Bhatt T
    Neuroscience; 2016 Oct; 333():252-63. PubMed ID: 27418344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Healthy aging does not impair lower extremity motor flexibility while walking across an uneven surface.
    Eckardt N; Rosenblatt NJ
    Hum Mov Sci; 2018 Dec; 62():67-80. PubMed ID: 30248484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.