BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24071663)

  • 1. Molecular structure and hydrogen bonding in pure liquid ethylene glycol and ethylene glycol-water mixtures studied using NIR spectroscopy.
    Chen Y; Ozaki Y; Czarnecki MA
    Phys Chem Chem Phys; 2013 Nov; 15(42):18694-701. PubMed ID: 24071663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular structure and hydrogen bonding of 2-aminoethanol, 1-amino-2-propanol, 3-amino-1-propanol, and binary mixtures with water studied by Fourier transform near-infrared spectroscopy and density functional theory calculations.
    Haufa KZ; Czarnecki MA
    Appl Spectrosc; 2010 Mar; 64(3):351-8. PubMed ID: 20223073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.
    Elsaesser T
    Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of temperature and concentration on the structure of tert-butyl alcohol/water mixtures: near-infrared spectroscopic study.
    Wojtków D; Czarnecki MA
    J Phys Chem A; 2005 Sep; 109(36):8218-24. PubMed ID: 16834208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylene Glycol - Polyethylene Glycol (EG-PEG) Mixtures: Infrared Spectra Wavelet Cross-Correlation Analysis.
    Caccamo MT; Magazù S
    Appl Spectrosc; 2017 Mar; 71(3):401-409. PubMed ID: 27558367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of temperature and concentration on the structure of sec-butyl alcohol and isobutyl alcohol/water mixtures: near-infrared spectroscopic study.
    Wojtków D; Czarnecki MA
    J Phys Chem A; 2006 Sep; 110(36):10552-7. PubMed ID: 16956236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-bond network formation of water molecules and its effects on the glass transitions in the ethylene glycol aqueous solutions: failure of the Gordon-Taylor law in the water-rich range and absence of the T(g) = 115 K rearrangement process in bulk pure water.
    Nagoe A; Oguni M
    J Phys Condens Matter; 2010 Aug; 22(32):325103. PubMed ID: 21386485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the perturbation of the H-bonding interaction in ethylene glycol clusters upon hydration.
    Kumar RM; Baskar P; Balamurugan K; Das S; Subramanian V
    J Phys Chem A; 2012 May; 116(17):4239-47. PubMed ID: 22530594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-ethylene glycol cationic dimeric micellar solutions: aggregation, micellar growth, and characteristics as reaction media.
    Rodríguez A; del Mar Graciani M; Cordobés F; Moyá ML
    J Phys Chem B; 2009 Jun; 113(22):7767-79. PubMed ID: 19422254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional heterospectral correlation analysis of water and liquid oleic acid using an online near-infrared/mid-infrared dual-region spectrometer.
    Genkawa T; Watari M; Nishii T; Suzuki M; Ozaki Y
    Appl Spectrosc; 2013 Jul; 67(7):724-30. PubMed ID: 23816123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of cooperative hydrogen bonding on the OH stretching-band shift for water clusters studied by matrix-isolation infrared spectroscopy and density functional theory.
    Ohno K; Okimura M; Akai N; Katsumoto Y
    Phys Chem Chem Phys; 2005 Aug; 7(16):3005-14. PubMed ID: 16186903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic and computational studies of aqueous ethylene glycol solution surfaces.
    Hommel EL; Merle JK; Ma G; Hadad CM; Allen HC
    J Phys Chem B; 2005 Jan; 109(2):811-8. PubMed ID: 16866446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Near-infrared spectral studies of hydrogen-bond in water-methanol mixtures].
    Yuan B; Dou XM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Nov; 24(11):1319-22. PubMed ID: 15762465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of temperature and concentration on the structure of N-methylacetamide-water complexes: Near-infrared spectroscopic study.
    Czarnecki MA; Haufa KZ
    J Phys Chem A; 2005 Feb; 109(6):1015-21. PubMed ID: 16833408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural rearrangements in water viewed through two-dimensional infrared spectroscopy.
    Roberts ST; Ramasesha K; Tokmakoff A
    Acc Chem Res; 2009 Sep; 42(9):1239-49. PubMed ID: 19585982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal properties and mixing state of ethylene glycol-water binary solutions by calorimetry, large-angle X-ray scattering, and small-angle neutron scattering.
    Matsugami M; Takamuku T; Otomo T; Yamaguchi T
    J Phys Chem B; 2006 Jun; 110(25):12372-9. PubMed ID: 16800561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared spectroscopy of methanol-hexane liquid mixtures. II. The strength of hydrogen bonding.
    Max JJ; Chapados C
    J Chem Phys; 2009 Mar; 130(12):124513. PubMed ID: 19334857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights Gained from Refined Force-Field for Pure and Aqueous Ethylene Glycol through Molecular Dynamics Simulations.
    Kaur S; Shobhna ; Kashyap HK
    J Phys Chem B; 2019 Aug; 123(30):6543-6553. PubMed ID: 31335141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional near-IR correlation spectroscopy study of molten globule-like state of ovalbumin in acidic pH region: simultaneous changes in hydration and secondary structure.
    Murayama K; Ozaki Y
    Biopolymers; 2002; 67(6):394-405. PubMed ID: 12209447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared spectroscopy of acetone-water liquid mixtures. II. Molecular model.
    Max JJ; Chapados C
    J Chem Phys; 2004 Apr; 120(14):6625-41. PubMed ID: 15267555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.