These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 24072027)

  • 1. Real-time human ambulation, activity, and physiological monitoring: taxonomy of issues, techniques, applications, challenges and limitations.
    Khusainov R; Azzi D; Achumba IE; Bersch SD
    Sensors (Basel); 2013 Sep; 13(10):12852-902. PubMed ID: 24072027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis.
    Alonge F; Cucco E; D'Ippolito F; Pulizzotto A
    Sensors (Basel); 2014 May; 14(5):8430-46. PubMed ID: 24828578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-accelerometer-based daily physical activity classification.
    Long X; Yin B; Aarts RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6107-10. PubMed ID: 19965261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drift removal for improving the accuracy of gait parameters using wearable sensor systems.
    Takeda R; Lisco G; Fujisawa T; Gastaldi L; Tohyama H; Tadano S
    Sensors (Basel); 2014 Dec; 14(12):23230-47. PubMed ID: 25490587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ZigBee-based wireless multi-sensor system for physical activity assessment.
    Mo L; Liu S; Gao RX; John D; Staudenmayer J; Freedson P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():846-9. PubMed ID: 22254443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Where to wear accelerometers to measure physical activity in people?
    Thaler-Kall K; Tusker F; Hermsdörfer J; Gorzelniak L; Horsch A
    Stud Health Technol Inform; 2013; 192():1045. PubMed ID: 23920819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time daily activity classification with wireless sensor networks using Hidden Markov Model.
    He J; Li H; Tan J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3192-5. PubMed ID: 18002674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an in-shoe pressure-sensitive device for gait analysis.
    De Rossi SM; Lenzi T; Vitiello N; Donati M; Persichetti A; Giovacchini F; Vecchi F; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5637-40. PubMed ID: 22255618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unobtrusive, continuous, in-home gait measurement using the Microsoft Kinect.
    Stone EE; Skubic M
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2925-32. PubMed ID: 23744661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones.
    Khan AM; Siddiqi MH; Lee SW
    Sensors (Basel); 2013 Sep; 13(10):13099-122. PubMed ID: 24084108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait analysis using floor markers and inertial sensors.
    Do TN; Suh YS
    Sensors (Basel); 2012; 12(2):1594-611. PubMed ID: 22438727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M; Penders J; Vullers R; Amft O
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network.
    Qi Y; Soh CB; Gunawan E; Low KS; Thomas R
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):88-97. PubMed ID: 25769165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instrumented Shoes for Real-Time Activity Monitoring Applications.
    Moufawad El Achkar C; Lenoble-Hoskovec C; Major K; Paraschiv-Ionescu A; Büla C; Aminian K
    Stud Health Technol Inform; 2016; 225():663-7. PubMed ID: 27332298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait analysis using wearable sensors.
    Tao W; Liu T; Zheng R; Feng H
    Sensors (Basel); 2012; 12(2):2255-83. PubMed ID: 22438763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Change-of-state determination to recognize mobility activities using a BlackBerry smartphone.
    Wu HH; Lemaire ED; Baddour N
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5252-5. PubMed ID: 22255522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geriatric rehabilitation after hip fracture. Role of body-fixed sensor measurements of physical activity.
    Benzinger P; Lindemann U; Becker C; Aminian K; Jamour M; Flick SE
    Z Gerontol Geriatr; 2014 Apr; 47(3):236-42. PubMed ID: 23780628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wearable physiological sensor suite for unobtrusive monitoring of physiological and cognitive state.
    Matthews R; McDonald NJ; Hervieux P; Turner PJ; Steindorf MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5276-81. PubMed ID: 18003198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower limb wearable capacitive sensing and its applications to recognizing human gaits.
    Zheng E; Chen B; Wei K; Wang Q
    Sensors (Basel); 2013 Oct; 13(10):13334-55. PubMed ID: 24084122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational framework for the standardization of motion analysis exploiting wearable inertial sensors.
    Turcato A; Ramat S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4963-6. PubMed ID: 22255452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.