BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 24072040)

  • 1. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation.
    Deng C; Zhang QG; Han GL; Gong Y; Zhu AM; Liu QL
    Nanoscale; 2013 Nov; 5(22):11028-34. PubMed ID: 24072040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions.
    Zhou K; Zhang QG; Li HM; Guo NN; Zhu AM; Liu QL
    Nanoscale; 2014 Sep; 6(17):10363-9. PubMed ID: 25073443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrathin pH-sensitive nanoporous membranes for superfast size-selective separation.
    Zhang QG; Deng C; Liu RR; Lin Z; Li HM; Zhu AM; Liu QL
    Chem Asian J; 2015 May; 10(5):1133-7. PubMed ID: 25736206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation.
    Li H; Song Z; Zhang X; Huang Y; Li S; Mao Y; Ploehn HJ; Bao Y; Yu M
    Science; 2013 Oct; 342(6154):95-8. PubMed ID: 24092739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible assembly of tunable nanoporous materials from "hairy" silica nanoparticles.
    Khabibullin A; Fullwood E; Kolbay P; Zharov I
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17306-12. PubMed ID: 25202879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filtration-based synthesis of micelle-derived composite membranes for high-flux ultrafiltration.
    Yao X; Guo L; Chen X; Huang J; Steinhart M; Wang Y
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6974-81. PubMed ID: 25774575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrathin nanofibrous films prepared from cadmium hydroxide nanostrands and anionic surfactants.
    Peng X; Karan S; Ichinose I
    Langmuir; 2009 Aug; 25(15):8514-8. PubMed ID: 19284779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nickel hydroxide nanosheet membranes with fast water and organics transport for molecular separation.
    Qu Y; Zhang QG; Soyekwo F; Gao RS; Lv RX; Lin CX; Chen MM; Zhu AM; Liu QL
    Nanoscale; 2016 Nov; 8(43):18428-18435. PubMed ID: 27775143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Transport through Membranes with Charged Nanochannels Formed by Scalable Self-Assembly of Random Copolymer Micelles.
    Sadeghi I; Kronenberg J; Asatekin A
    ACS Nano; 2018 Jan; 12(1):95-108. PubMed ID: 29205035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast molecule separation through layered WS(2) nanosheet membranes.
    Sun L; Ying Y; Huang H; Song Z; Mao Y; Xu Z; Peng X
    ACS Nano; 2014 Jun; 8(6):6304-11. PubMed ID: 24853383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective separation of similarly sized proteins with tunable nanoporous block copolymer membranes.
    Qiu X; Yu H; Karunakaran M; Pradeep N; Nunes SP; Peinemann KV
    ACS Nano; 2013 Jan; 7(1):768-76. PubMed ID: 23252799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges and advances in the field of self-assembled membranes.
    van Rijn P; Tutus M; Kathrein C; Zhu L; Wessling M; Schwaneberg U; Böker A
    Chem Soc Rev; 2013 Aug; 42(16):6578-92. PubMed ID: 23744480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoresponsive Ultrathin Membranes with Precisely Tuned Nanopores for High-Flux Separation.
    Zhu Y; Gao S; Hu L; Jin J
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13607-14. PubMed ID: 27177239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge- and size-based separation of macromolecules using ultrathin silicon membranes.
    Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    Nature; 2007 Feb; 445(7129):749-53. PubMed ID: 17301789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinduced superwetting single-walled carbon nanotube/TiO(2) ultrathin network films for ultrafast separation of oil-in-water emulsions.
    Gao SJ; Shi Z; Zhang WB; Zhang F; Jin J
    ACS Nano; 2014 Jun; 8(6):6344-52. PubMed ID: 24869793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin Membranes with a Polymer/Nanofiber Interpenetrated Structure for High-Efficiency Liquid Separations.
    Ji Y; Chen G; Liu G; Zhao J; Liu G; Gu X; Jin W
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36717-36726. PubMed ID: 31509377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive Printed All-Cellulose Membranes with Hierarchical Structure for Highly Efficient Separation of Oil/Water Nanoemulsions.
    Li D; Huang X; Huang Y; Yuan J; Huang D; Cheng GJ; Zhang L; Chang C
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44375-44382. PubMed ID: 31682395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Flux Graphene Oxide Membranes Intercalated by Metal-Organic Framework with Highly Selective Separation of Aqueous Organic Solution.
    Ying Y; Liu D; Zhang W; Ma J; Huang H; Yang Q; Zhong C
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1710-1718. PubMed ID: 28001352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric Aerogel Membranes with Ultrafast Water Permeation for the Separation of Oil-in-Water Emulsion.
    Liu Y; Su Y; Guan J; Cao J; Zhang R; He M; Jiang Z
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26546-26554. PubMed ID: 30024725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photothermal-Responsive Single-Walled Carbon Nanotube-Based Ultrathin Membranes for On/Off Switchable Separation of Oil-in-Water Nanoemulsions.
    Hu L; Gao S; Ding X; Wang D; Jiang J; Jin J; Jiang L
    ACS Nano; 2015 May; 9(5):4835-42. PubMed ID: 25905455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.