BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24072058)

  • 1. Nanostructure-based optoelectronic sensing of vapor phase explosives--a promising but challenging method.
    Zu B; Guo Y; Dou X
    Nanoscale; 2013 Nov; 5(22):10693-701. PubMed ID: 24072058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Luminescent metal-organic framework-functionalized graphene oxide nanocomposites and the reversible detection of high explosives.
    Lee JH; Jaworski J; Jung JH
    Nanoscale; 2013 Sep; 5(18):8533-40. PubMed ID: 23892560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of gas phase equilibria on the chemical vapor deposition of graphene.
    Lewis AM; Derby B; Kinloch IA
    ACS Nano; 2013 Apr; 7(4):3104-17. PubMed ID: 23484546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary screening of biomimetic coatings for selective detection of explosives.
    Jaworski JW; Raorane D; Huh JH; Majumdar A; Lee SW
    Langmuir; 2008 May; 24(9):4938-43. PubMed ID: 18363413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent amphiphilic cellulose nanoaggregates for sensing trace explosives in aqueous solution.
    Wang X; Guo Y; Li D; Chen H; Sun RC
    Chem Commun (Camb); 2012 Jun; 48(45):5569-71. PubMed ID: 22362418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of vapor profiles of explosives over time using ATASS (Automated Training Aid Simulation using SPME).
    Moore S; Maccrehan W; Schantz M
    Forensic Sci Int; 2011 Oct; 212(1-3):90-5. PubMed ID: 21696900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SERS substrate for detection of explosives.
    Chou A; Jaatinen E; Buividas R; Seniutinas G; Juodkazis S; Izake EL; Fredericks PM
    Nanoscale; 2012 Dec; 4(23):7419-24. PubMed ID: 23085837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trace detection and discrimination of explosives using electrochemical potentiometric gas sensors.
    Sekhar PK; Brosha EL; Mukundan R; Linker KL; Brusseau C; Garzon FH
    J Hazard Mater; 2011 Jun; 190(1-3):125-32. PubMed ID: 21435779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable generation and adsorption of energetic compounds in the vapor phase at trace levels: a tool for testing and developing sensitive and selective substrates for explosive detection.
    Bonnot K; Bernhardt P; Hassler D; Baras C; Comet M; Keller V; Spitzer D
    Anal Chem; 2010 Apr; 82(8):3389-93. PubMed ID: 20345122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of volatile components of drugs and explosives by solid phase microextraction-ion mobility spectrometry.
    Lai H; Guerra P; Joshi M; Almirall JR
    J Sep Sci; 2008 Feb; 31(2):402-12. PubMed ID: 18196520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensors--an effective approach for the detection of explosives.
    Singh S
    J Hazard Mater; 2007 Jun; 144(1-2):15-28. PubMed ID: 17379401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current trends in explosive detection techniques.
    Caygill JS; Davis F; Higson SP
    Talanta; 2012 Jan; 88():14-29. PubMed ID: 22265465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical and experimental study of sensing triacetone triperoxide (TATP) explosive through nanostructured TiO₂ substrate.
    Ray RS; Sarma B; Mohanty S; Misra M
    Talanta; 2014 Jan; 118():304-11. PubMed ID: 24274301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of thermal desorption instrumentation with a direct liquid deposition calibration method for trace 2,4,6-trinitrotoluene quantitation.
    Field CR; Giordano BC; Rogers DA; Lubrano AL; Rose-Pehrsson SL
    J Chromatogr A; 2012 Mar; 1227():10-8. PubMed ID: 22265176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and characterization of an electrostatic particle sampling system for the selective collection of trace explosives.
    Beer S; Müller G; Wöllenstein J
    Talanta; 2012 Jan; 89():441-7. PubMed ID: 22284515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.
    Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer.
    Stringer RC; Gangopadhyay S; Grant SA
    Anal Chem; 2010 May; 82(10):4015-9. PubMed ID: 20402483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template-directed synthesis of silica nanotubes for explosive detection.
    Yildirim A; Acar H; Erkal TS; Bayindir M; Guler MO
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):4159-64. PubMed ID: 21942571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid electrochemical-colorimetric sensing platform for detection of explosives.
    Forzani ES; Lu D; Leright MJ; Aguilar AD; Tsow F; Iglesias RA; Zhang Q; Lu J; Li J; Tao N
    J Am Chem Soc; 2009 Feb; 131(4):1390-1. PubMed ID: 19173664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic-inorganic hybrids based on ultrathin oxide layers: designed nanostructures for molecular recognition.
    Okada T; Ide Y; Ogawa M
    Chem Asian J; 2012 Sep; 7(9):1980-92. PubMed ID: 22615212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.