BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 2407237)

  • 1. The selectivity of statine-based inhibitors against various human aspartic proteinases.
    Jupp RA; Dunn BM; Jacobs JW; Vlasuk G; Arcuri KE; Veber DF; Perlow DS; Payne LS; Boger J; de Laszlo S
    Biochem J; 1990 Feb; 265(3):871-8. PubMed ID: 2407237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray studies of aspartic proteinase-statine inhibitor complexes.
    Cooper JB; Foundling SI; Blundell TL; Boger J; Jupp RA; Kay J
    Biochemistry; 1989 Oct; 28(21):8596-603. PubMed ID: 2690945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of human napsin A.
    Cronshaw RF; Schauer-Vukasinovic V; Powell DJ; Giller T; Bur D; Kay J
    Protein Pept Lett; 2003 Feb; 10(1):35-42. PubMed ID: 12625824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of porcine pepsin by two substrate analogues containing statine. The effect of histidine at the P2 subsite on the inhibition of aspartic proteinases.
    Maibaum J; Rich DH
    J Med Chem; 1988 Mar; 31(3):625-9. PubMed ID: 3126296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of aspartic proteinases by synthetic peptides derived from the propart region of human prorenin.
    Richards AD; Kay J; Dunn BM; Bessant CM; Charlton PA
    Int J Biochem; 1992 Feb; 24(2):297-301. PubMed ID: 1733796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pH dependence of the hydrolysis of chromogenic substrates of the type, Lys-Pro-Xaa-Yaa-Phe-(NO2)Phe-Arg-Leu, by selected aspartic proteinases: evidence for specific interactions in subsites S3 and S2.
    Dunn BM; Valler MJ; Rolph CE; Foundling SI; Jimenez M; Kay J
    Biochim Biophys Acta; 1987 Jun; 913(2):122-30. PubMed ID: 3109484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparisons of the three-dimensional structures, specificities and glycosylation of renins, yeast proteinase A and cathepsin D.
    Aguilar CF; Dhanaraj V; Guruprasad K; Dealwis C; Badasso M; Cooper JB; Wood SP; Blundell TL
    Adv Exp Med Biol; 1995; 362():155-66. PubMed ID: 8540315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate specificities and kinetic properties of proteinase A from the yeast Saccharomyces cerevisiae and the development of a novel substrate.
    Kondo H; Shibano Y; Amachi T; Cronin N; Oda K; Dunn BM
    J Biochem; 1998 Jul; 124(1):141-7. PubMed ID: 9644256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shewasin A, an active pepsin homolog from the bacterium Shewanella amazonensis.
    Simões I; Faro R; Bur D; Kay J; Faro C
    FEBS J; 2011 Sep; 278(17):3177-86. PubMed ID: 21749650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate specificity and inhibitors of aspartic proteinases.
    Kay J; Dunn BM
    Scand J Clin Lab Invest Suppl; 1992; 210():23-30. PubMed ID: 1455176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid sequence of endothiapepsin. Complete primary structure of the aspartic protease from Endothia parasitica.
    Barkholt V
    Eur J Biochem; 1987 Sep; 167(2):327-38. PubMed ID: 3305016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a structure-based statine cyclic diamino amide encoded combinatorial library against plasmepsin II and cathepsin D.
    Carroll CD; Johnson TO; Tao S; Lauri G; Orlowski M; Gluzman IY; Goldberg DE; Dolle RE
    Bioorg Med Chem Lett; 1998 Nov; 8(22):3203-6. PubMed ID: 9873703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the binding preferences/specificity in the active site of human cathepsin E.
    Rao-Naik C; Guruprasad K; Batley B; Rapundalo S; Hill J; Blundell T; Kay J; Dunn BM
    Proteins; 1995 Jun; 22(2):168-81. PubMed ID: 7567964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active-site specificity of digestive aspartic peptidases from the four species of Plasmodium that infect humans using chromogenic combinatorial peptide libraries.
    Beyer BB; Johnson JV; Chung AY; Li T; Madabushi A; Agbandje-McKenna M; McKenna R; Dame JB; Dunn BM
    Biochemistry; 2005 Feb; 44(6):1768-79. PubMed ID: 15697202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specificity in the binding of inhibitors to the active site of human/primate aspartic proteinases: analysis of P2-P1-P1'-P2' variation.
    Rao CM; Scarborough PE; Kay J; Batley B; Rapundalo S; Klutchko S; Taylor MD; Lunney EA; Humblet CC; Dunn BM
    J Med Chem; 1993 Sep; 36(18):2614-20. PubMed ID: 8410973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray crystallographic analysis of inhibition of endothiapepsin by cyclohexyl renin inhibitors.
    Cooper J; Quail W; Frazao C; Foundling SI; Blundell TL; Humblet C; Lunney EA; Lowther WT; Dunn BM
    Biochemistry; 1992 Sep; 31(35):8142-50. PubMed ID: 1525155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrocyclic statine-based inhibitors of BACE-1.
    Barazza A; Götz M; Cadamuro SA; Goettig P; Willem M; Steuber H; Kohler T; Jestel A; Reinemer P; Renner C; Bode W; Moroder L
    Chembiochem; 2007 Nov; 8(17):2078-91. PubMed ID: 17963207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substitution of proline with pipecolic acid at the scissile bond converts a peptide substrate of HIV proteinase into a selective inhibitor.
    Copeland TD; Wondrak EM; Tozser J; Roberts MM; Oroszlan S
    Biochem Biophys Res Commun; 1990 May; 169(1):310-4. PubMed ID: 2190554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the Rhizomucor miehei aspartic proteinase complexed with the inhibitor pepstatin A at 2.7 A resolution.
    Yang J; Quail JW
    Acta Crystallogr D Biol Crystallogr; 1999 Mar; 55(Pt 3):625-30. PubMed ID: 10089458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based subsite specificity mapping of human cathepsin D using statine-based inhibitors.
    Majer P; Collins JR; Gulnik SV; Erickson JW
    Protein Sci; 1997 Jul; 6(7):1458-66. PubMed ID: 9232647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.