BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 2407237)

  • 21. Subsite specificity of the proteinase from myeloblastosis associated virus.
    Konvalinka J; Blaha I; Skrabana R; Sedlacek J; Pichova I; Kapralek F; Kostka V; Strop P
    FEBS Lett; 1991 Apr; 282(1):73-6. PubMed ID: 2026269
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substrate analogue inhibitors of the IgA1 proteinases from Neisseria gonorrhoeae.
    Burton J; Wood SG; Lynch M; Plaut AG
    J Med Chem; 1988 Aug; 31(8):1647-51. PubMed ID: 3135406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling.
    Scarborough PE; Guruprasad K; Topham C; Richo GR; Conner GE; Blundell TL; Dunn BM
    Protein Sci; 1993 Feb; 2(2):264-76. PubMed ID: 8443603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A structural comparison of 21 inhibitor complexes of the aspartic proteinase from Endothia parasitica.
    Bailey D; Cooper JB
    Protein Sci; 1994 Nov; 3(11):2129-43. PubMed ID: 7703859
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of cathepsin D by substrate analogues containing statine and by analogues of pepstatin.
    Agarwal NS; Rich DH
    J Med Chem; 1986 Dec; 29(12):2519-24. PubMed ID: 3783611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 15gag proteinase of myeloblastosis-associated virus: specificity studies with substrate-based inhibitors.
    Pavlícková L; Stys D; Soucek M; Urban J; Hrusková O; Sedlácek J; Strop P
    Arch Biochem Biophys; 1992 Nov; 298(2):753-6. PubMed ID: 1417001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Carboxylic proteinases from the microscopic fungi Trichoderma viride and Trichoderma lignorum].
    Gaĭda AV; Osterman AL; Rudenskaia GN; Stepanov VM
    Biokhimiia; 1981 Jan; 46(1):181-9. PubMed ID: 7018591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1.
    Lowther WT; Majer P; Dunn BM
    Protein Sci; 1995 Apr; 4(4):689-702. PubMed ID: 7613467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of P1' and P3' residues of trivalent thrombin inhibitors and their crystal structures.
    Slon-Usakiewicz JJ; Sivaraman J; Li Y; Cygler M; Konishi Y
    Biochemistry; 2000 Mar; 39(9):2384-91. PubMed ID: 10694407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological activity of aspartic proteinase inhibitors related to pepstatin.
    Gunn JM; Owens RA; Liu WS; Glover GI
    Acta Biol Med Ger; 1981; 40(10-11):1547-53. PubMed ID: 6805191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-resolution X-ray diffraction study of the complex between endothiapepsin and an oligopeptide inhibitor: the analysis of the inhibitor binding and description of the rigid body shift in the enzyme.
    Sali A; Veerapandian B; Cooper JB; Foundling SI; Hoover DJ; Blundell TL
    EMBO J; 1989 Aug; 8(8):2179-88. PubMed ID: 2676515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new chromophoric substrate for penicillopepsin and other fungal aspartic proteinases.
    Hofmann T; Hodges RS
    Biochem J; 1982 Jun; 203(3):603-10. PubMed ID: 7052062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. X-ray-crystallographic studies of complexes of pepstatin A and a statine-containing human renin inhibitor with endothiapepsin.
    Bailey D; Cooper JB; Veerapandian B; Blundell TL; Atrash B; Jones DM; Szelke M
    Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):363-71. PubMed ID: 8424781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum mechanical modeling of aspartic proteinase interactions: difference in binding of diastereomeric statine models.
    Goldblum A
    Biochem Biophys Res Commun; 1988 Dec; 157(2):450-6. PubMed ID: 3060116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of aspartic proteinases by propart peptides of human procathepsin D and chicken pepsinogen.
    Fusek M; Mares M; Vágner J; Voburka Z; Baudys M
    FEBS Lett; 1991 Aug; 287(1-2):160-2. PubMed ID: 1879525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular and enzymatic properties of a cathepsin L-like proteinase with distinct substrate specificity from northern shrimp (Pandalus borealis).
    Aoki H; Ahsan MN; Watabe S
    J Comp Physiol B; 2004 Jan; 174(1):59-69. PubMed ID: 14574613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effective blocking of HIV-1 proteinase activity by characteristic inhibitors of aspartic proteinases.
    Richards AD; Roberts R; Dunn BM; Graves MC; Kay J
    FEBS Lett; 1989 Apr; 247(1):113-7. PubMed ID: 2651157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An analysis of subdomain orientation, conformational change and disorder in relation to crystal packing of aspartic proteinases.
    Bailey D; Carpenter EP; Coker A; Coker S; Read J; Jones AT; Erskine P; Aguilar CF; Badasso M; Toldo L; Rippmann F; Sanz-Aparicio J; Albert A; Blundell TL; Roberts NB; Wood SP; Cooper JB
    Acta Crystallogr D Biol Crystallogr; 2012 May; 68(Pt 5):541-52. PubMed ID: 22525752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High resolution X-ray analyses of renin inhibitor-aspartic proteinase complexes.
    Foundling SI; Cooper J; Watson FE; Cleasby A; Pearl LH; Sibanda BL; Hemmings A; Wood SP; Blundell TL; Valler MJ
    Nature; 1987 May 28-Jun 3; 327(6120):349-52. PubMed ID: 3295561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New renin inhibitors containing novel analogues of statine.
    Jones DM; Sueiras-Diaz J; Szelke M; Leckie BJ; Beattie SR; Morton J; Neidle S; Kuroda R
    J Pept Res; 1997 Aug; 50(2):109-21. PubMed ID: 9273895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.