These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 24072581)
21. [The gravity-regulated formation of peg and auxin transport in cucumber seedlings]. Kamada M; Sakata T; Fujii N; Higashitani A; Takahashi H Biol Sci Space; 2000 Oct; 14(3):240-1. PubMed ID: 12561869 [No Abstract] [Full Text] [Related]
22. Hexose transporter CsSWEET7a in cucumber mediates phloem unloading in companion cells for fruit development. Li Y; Liu H; Yao X; Wang J; Feng S; Sun L; Ma S; Xu K; Chen LQ; Sui X Plant Physiol; 2021 May; 186(1):640-654. PubMed ID: 33604597 [TBL] [Abstract][Full Text] [Related]
23. Alternative polyadenylation of the stacyose synthase gene mediates source-sink regulation in cucumber. Zhang J; Gu H; Dai H; Zhang Z; Miao M J Plant Physiol; 2020 Feb; 245():153111. PubMed ID: 31926460 [TBL] [Abstract][Full Text] [Related]
24. Phloem loading in cucumber: combined symplastic and apoplastic strategies. Ma S; Sun L; Sui X; Li Y; Chang Y; Fan J; Zhang Z Plant J; 2019 May; 98(3):391-404. PubMed ID: 30604489 [TBL] [Abstract][Full Text] [Related]
25. Variations in the level of enzyme activity and immunolocalization of calcium-dependent protein kinases in the phloem of different cucumber organs. Kumar KG; Jayabaskaran C J Plant Physiol; 2004 Aug; 161(8):889-901. PubMed ID: 15384400 [TBL] [Abstract][Full Text] [Related]
26. Noninvasive Determination of Phloem Transport Speed with Carbon-14 ( Vincent C; Minchin PEH; Liesche J Methods Mol Biol; 2019; 2014():153-162. PubMed ID: 31197794 [TBL] [Abstract][Full Text] [Related]
27. Analysis of the systemic colonization of cucumber plants by Cucumber green mottle mosaic virus. Moreno IM; Thompson JR; García-Arenal F J Gen Virol; 2004 Mar; 85(Pt 3):749-759. PubMed ID: 14993661 [TBL] [Abstract][Full Text] [Related]
28. The Arabidopsis repressor of light signaling SPA1 acts in the phloem to regulate seedling de-etiolation, leaf expansion and flowering time. Ranjan A; Fiene G; Fackendahl P; Hoecker U Development; 2011 May; 138(9):1851-62. PubMed ID: 21447551 [TBL] [Abstract][Full Text] [Related]
29. Arabidopsis plants harbouring a mutation in AtSUC2, encoding the predominant sucrose/proton symporter necessary for efficient phloem transport, are able to complete their life cycle and produce viable seed. Srivastava AC; Dasgupta K; Ajieren E; Costilla G; McGarry RC; Ayre BG Ann Bot; 2009 Nov; 104(6):1121-8. PubMed ID: 19789176 [TBL] [Abstract][Full Text] [Related]
30. Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Zhang B; Tolstikov V; Turnbull C; Hicks LM; Fiehn O Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13532-7. PubMed ID: 20566864 [TBL] [Abstract][Full Text] [Related]
31. Auxin-responsive DR5 promoter coupled with transport assays suggest separate but linked routes of auxin transport during woody stem development in Populus. Spicer R; Tisdale-Orr T; Talavera C PLoS One; 2013; 8(8):e72499. PubMed ID: 23977308 [TBL] [Abstract][Full Text] [Related]
32. [Effects of lanthanum on the plant growth and leaf anti-oxidative enzyme activities of cucumber seedlings under nitrate stress]. Gao QH; Wang XF; Shi QH; Yang FJ; Wei M Ying Yong Sheng Tai Xue Bao; 2008 May; 19(5):976-80. PubMed ID: 18655580 [TBL] [Abstract][Full Text] [Related]
33. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. Merrild MP; Ambus P; Rosendahl S; Jakobsen I New Phytol; 2013 Oct; 200(1):229-240. PubMed ID: 23738787 [TBL] [Abstract][Full Text] [Related]
34. The role of the storage carbon of cotyledons in the establishment of seedlings of Hymenaea courbaril under different light conditions. Santos HP; Buckeridge MS Ann Bot; 2004 Dec; 94(6):819-30. PubMed ID: 15514028 [TBL] [Abstract][Full Text] [Related]
35. So similar yet so different: The distinct contributions of extrafascicular and fascicular phloem to transport and exudation in cucumber plants. Schnieder N; Känel A; Zimmermann M; Kriebs K; Witte A; Wrobel LS; Twyman RM; Prüfer D; Furch ACU; Noll GA J Plant Physiol; 2022 Apr; 271():153643. PubMed ID: 35248933 [TBL] [Abstract][Full Text] [Related]
36. Photomodulation of strigolactone biosynthesis and accumulation during sunflower seedling growth. Bharti N; Tripathi S; Bhatla SC Plant Signal Behav; 2015; 10(8):e1049792. PubMed ID: 26252191 [TBL] [Abstract][Full Text] [Related]
37. Dark-chilling induces substantial structural changes and modifies galactolipid and carotenoid composition during chloroplast biogenesis in cucumber (Cucumis sativus L.) cotyledons. Skupień J; Wójtowicz J; Kowalewska Ł; Mazur R; Garstka M; Gieczewska K; Mostowska A Plant Physiol Biochem; 2017 Feb; 111():107-118. PubMed ID: 27915172 [TBL] [Abstract][Full Text] [Related]
38. [Effects of D-arginine on polyamine content and anaerobic respiration metabolism of cucumber seedling roots under hypoxia stress]. Li J; Hu XH; Guo SR; Jia YX; Du CX Ying Yong Sheng Tai Xue Bao; 2007 Feb; 18(2):376-82. PubMed ID: 17450743 [TBL] [Abstract][Full Text] [Related]
39. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance. Lü J; Sui X; Ma S; Li X; Liu H; Zhang Z Plant Mol Biol; 2017 Sep; 95(1-2):1-15. PubMed ID: 28608281 [TBL] [Abstract][Full Text] [Related]
40. Physical and chemical indices of cucumber seedling leaves under dibutyl phthalate stress. Zhang Y; Du N; Wang L; Zhang H; Zhao J; Sun G; Wang P Environ Sci Pollut Res Int; 2015 Mar; 22(5):3477-88. PubMed ID: 25242588 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]