BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24073201)

  • 1. The suppressor of AAC2 Lethality SAL1 modulates sensitivity of heterologously expressed artemia ADP/ATP carrier to bongkrekate in yeast.
    Wysocka-Kapcinska M; Torocsik B; Turiak L; Tsaprailis G; David CL; Hunt AM; Vekey K; Adam-Vizi V; Kucharczyk R; Chinopoulos C
    PLoS One; 2013; 8(9):e74187. PubMed ID: 24073201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of Ca2+-induced mitochondrial permeability transition but presence of bongkrekate-sensitive nucleotide exchange in C. crangon and P. serratus.
    Konrad C; Kiss G; Torocsik B; Adam-Vizi V; Chinopoulos C
    PLoS One; 2012; 7(6):e39839. PubMed ID: 22768139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pleiotropic effects of the yeast Sal1 and Aac2 carriers on mitochondrial function via an activity distinct from adenine nucleotide transport.
    Kucejova B; Li L; Wang X; Giannattasio S; Chen XJ
    Mol Genet Genomics; 2008 Jul; 280(1):25-39. PubMed ID: 18431598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular basis for relative physiological functionality of the ADP/ATP carrier isoforms in Saccharomyces cerevisiae.
    Smith CP; Thorsness PE
    Genetics; 2008 Jul; 179(3):1285-99. PubMed ID: 18562646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast ADP/ATP carrier (AAC) proteins exhibit similar enzymatic properties but their deletion produces different phenotypes.
    Drgon T; Sabová L; Gavurniková G; Kolarov J
    FEBS Lett; 1992 Jun; 304(2-3):277-80. PubMed ID: 1618335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A distinct sequence in the adenine nucleotide translocase from Artemia franciscana embryos is associated with insensitivity to bongkrekate and atypical effects of adenine nucleotides on Ca2+ uptake and sequestration.
    Konràd C; Kiss G; Töröcsik B; Lábár JL; Gerencser AA; Mándi M; Adam-Vizi V; Chinopoulos C
    FEBS J; 2011 Mar; 278(5):822-36. PubMed ID: 21205213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ADP/ATP translocator is essential only for anaerobic growth of yeast Saccharomyces cerevisiae.
    Drgon T; Sabová L; Nelson N; Kolarov J
    FEBS Lett; 1991 Sep; 289(2):159-62. PubMed ID: 1915842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sal1p, a calcium-dependent carrier protein that suppresses an essential cellular function associated With the Aac2 isoform of ADP/ATP translocase in Saccharomyces cerevisiae.
    Chen XJ
    Genetics; 2004 Jun; 167(2):607-17. PubMed ID: 15238515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The state of ADP or ATP fixed to the mitochondria by bongkrekate.
    Klingenberg M
    Eur J Biochem; 1976 Jun; 65(2):601-5. PubMed ID: 949984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenine nucleotide transport via Sal1 carrier compensates for the essential function of the mitochondrial ADP/ATP carrier.
    Laco J; Zeman I; Pevala V; Polcic P; Kolarov J
    FEMS Yeast Res; 2010 May; 10(3):290-6. PubMed ID: 20141534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation-dependent swinging of the matrix loop m2 of the mitochondrial Saccharomyces cerevisiae ADP/ATP carrier.
    Dahout-Gonzalez C; Ramus C; Dassa EP; Dianoux AC; Brandolin G
    Biochemistry; 2005 Dec; 44(49):16310-20. PubMed ID: 16331992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenesis of some positive and negative residues occurring in repeat triad residues in the ADP/ATP carrier from yeast.
    Müller V; Heidkämper D; Nelson DR; Klingenberg M
    Biochemistry; 1997 Dec; 36(50):16008-18. PubMed ID: 9398336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function studies of adenine nucleotide transport in mitochondria. II. Biochemical analysis of distinct AAC1 and AAC2 proteins in yeast.
    Gawaz M; Douglas MG; Klingenberg M
    J Biol Chem; 1990 Aug; 265(24):14202-8. PubMed ID: 2167309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Molecular Mechanism of Transport by the Mitochondrial ADP/ATP Carrier.
    Ruprecht JJ; King MS; Zögg T; Aleksandrova AA; Pardon E; Crichton PG; Steyaert J; Kunji ERS
    Cell; 2019 Jan; 176(3):435-447.e15. PubMed ID: 30611538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ADP and ATP transport in mitochondria and its carrier.
    Klingenberg M
    Biochim Biophys Acta; 2008 Oct; 1778(10):1978-2021. PubMed ID: 18510943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The binding of bongkrekate to mitochondria.
    Klingenberg M; Appel M; Babel W; Aquila H
    Eur J Biochem; 1983 Apr; 131(3):647-54. PubMed ID: 6840073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiolipin, conformation, and respiratory complex-dependent oligomerization of the major mitochondrial ADP/ATP carrier in yeast.
    Senoo N; Kandasamy S; Ogunbona OB; Baile MG; Lu Y; Claypool SM
    Sci Adv; 2020 Aug; 6(35):eabb0780. PubMed ID: 32923632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the role of positive residues in the ADP/ATP carrier from yeast. The effect of six arginine mutations of oxidative phosphorylation and AAC expression.
    Müller V; Basset G; Nelson DR; Klingenberg M
    Biochemistry; 1996 Dec; 35(50):16132-43. PubMed ID: 8973185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A third ADP/ATP translocator gene in yeast.
    Kolarov J; Kolarova N; Nelson N
    J Biol Chem; 1990 Jul; 265(21):12711-6. PubMed ID: 2165073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles.
    van der Giezen M; Slotboom DJ; Horner DS; Dyal PL; Harding M; Xue GP; Embley TM; Kunji ER
    EMBO J; 2002 Feb; 21(4):572-9. PubMed ID: 11847105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.