These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 24073334)

  • 1. Developmental origins of chronic renal disease: an integrative hypothesis.
    Boubred F; Saint-Faust M; Buffat C; Ligi I; Grandvuillemin I; Simeoni U
    Int J Nephrol; 2013; 2013():346067. PubMed ID: 24073334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adverse consequences of accelerated neonatal growth: cardiovascular and renal issues.
    Simeoni U; Ligi I; Buffat C; Boubred F
    Pediatr Nephrol; 2011 Apr; 26(4):493-508. PubMed ID: 20938692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental Origins and Nephron Endowment in Hypertension.
    Gurusinghe S; Tambay A; Sethna CB
    Front Pediatr; 2017; 5():151. PubMed ID: 28706894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenerational programming of nephron deficits and hypertension.
    Briffa JF; Wlodek ME; Moritz KM
    Semin Cell Dev Biol; 2020 Jul; 103():94-103. PubMed ID: 29859996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Prematurity and Growth Restriction on Adult Blood Pressure and Kidney Volume.
    Iyengar A; Bonilla-Félix M
    Adv Chronic Kidney Dis; 2022 May; 29(3):243-250. PubMed ID: 36084971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal Programming by Transient Postnatal Overfeeding: The Role of Senescence Pathways.
    Juvet C; Siddeek B; Yzydorczyk C; Vergely C; Nardou K; Armengaud JB; Benahmed M; Simeoni U; Cachat F; Chehade H
    Front Physiol; 2020; 11():511. PubMed ID: 32523548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental programming of hypertension and kidney disease.
    Chong E; Yosypiv IV
    Int J Nephrol; 2012; 2012():760580. PubMed ID: 23251800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early postnatal overfeeding induces early chronic renal dysfunction in adult male rats.
    Boubred F; Daniel L; Buffat C; Feuerstein JM; Tsimaratos M; Oliver C; Dignat-George F; Lelièvre-Pégorier M; Simeoni U
    Am J Physiol Renal Physiol; 2009 Oct; 297(4):F943-51. PubMed ID: 19656908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental Origins of Chronic Kidney Disease: Should We Focus on Early Life?
    Tain YL; Hsu CN
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28208659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early life obesity and chronic kidney disease in later life.
    Yim HE; Yoo KH
    Pediatr Nephrol; 2015 Aug; 30(8):1255-63. PubMed ID: 25145270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental programming of a reduced nephron endowment: more than just a baby's birth weight.
    Moritz KM; Singh RR; Probyn ME; Denton KM
    Am J Physiol Renal Physiol; 2009 Jan; 296(1):F1-9. PubMed ID: 18653482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of early postnatal nutrition on chronic kidney disease and arterial hypertension in adulthood: a narrative review.
    Juvet C; Simeoni U; Yzydorczyk C; Siddeek B; Armengaud JB; Nardou K; Juvet P; Benahmed M; Cachat F; Chehade H
    J Dev Orig Health Dis; 2018 Dec; 9(6):598-614. PubMed ID: 30078383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low nephron number and its clinical consequences.
    Luyckx VA; Shukha K; Brenner BM
    Rambam Maimonides Med J; 2011 Oct; 2(4):e0061. PubMed ID: 23908819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical consequences of developmental programming of low nephron number.
    Luyckx VA; Brenner BM
    Anat Rec (Hoboken); 2020 Oct; 303(10):2613-2631. PubMed ID: 31587509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nephron endowment and filtration surface area in the kidney after growth restriction of fetal sheep.
    Mitchell EK; Louey S; Cock ML; Harding R; Black MJ
    Pediatr Res; 2004 May; 55(5):769-73. PubMed ID: 14973179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gender differences in developmental programming of cardiovascular diseases.
    Dasinger JH; Alexander BT
    Clin Sci (Lond); 2016 Mar; 130(5):337-48. PubMed ID: 26814204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Birth Weight and Susceptibility to Chronic Kidney Disease.
    Al Salmi I; Hannawi S
    Saudi J Kidney Dis Transpl; 2020; 31(4):717-726. PubMed ID: 32801232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The magnitude of nephron number reduction mediates intrauterine growth-restriction-induced long term chronic renal disease in the rat. A comparative study in two experimental models.
    Boubred F; Daniel L; Buffat C; Tsimaratos M; Oliver C; Lelièvre-Pégorier M; Simeoni U
    J Transl Med; 2016 Nov; 14(1):331. PubMed ID: 27899104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low birth weight, nephron number, and kidney disease.
    Luyckx VA; Brenner BM
    Kidney Int Suppl; 2005 Aug; (97):S68-77. PubMed ID: 16014104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of prenatal and postnatal maternal environment on nephron endowment, renal function and blood pressure in the Lewis polycystic kidney rat.
    Ding A; Walton SL; Moritz KM; Phillips JK
    J Dev Orig Health Dis; 2019 Apr; 10(2):154-163. PubMed ID: 30274564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.