BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24074039)

  • 1. MicroCT image-generated tumour geometry and SAR distribution for tumour temperature elevation simulations in magnetic nanoparticle hyperthermia.
    Lebrun A; Manuchehrabadi N; Attaluri A; Wang F; Ma R; Zhu L
    Int J Hyperthermia; 2013 Dec; 29(8):730-8. PubMed ID: 24074039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment.
    LeBrun A; Ma R; Zhu L
    J Therm Biol; 2016 Dec; 62(Pt B):129-137. PubMed ID: 27888926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of infusion strategy for achieving repeatable nanoparticle distribution and quantification of thermal dosage using micro-CT Hounsfield unit in magnetic nanoparticle hyperthermia.
    LeBrun A; Joglekar T; Bieberich C; Ma R; Zhu L
    Int J Hyperthermia; 2016; 32(2):132-43. PubMed ID: 26758242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle distribution and temperature elevations in prostatic tumours in mice during magnetic nanoparticle hyperthermia.
    Attaluri A; Ma R; Qiu Y; Li W; Zhu L
    Int J Hyperthermia; 2011; 27(5):491-502. PubMed ID: 21756046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method.
    Golneshan AA; Lahonian M
    Int J Hyperthermia; 2011; 27(3):266-74. PubMed ID: 21501028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the optimal choice of the exposure conditions and the nanoparticle features in magnetic nanoparticle hyperthermia.
    Bellizzi G; Bucci OM
    Int J Hyperthermia; 2010; 26(4):389-403. PubMed ID: 20210609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.
    Soetaert F; Dupré L; Ivkov R; Crevecoeur G
    Biomed Tech (Berl); 2015 Oct; 60(5):491-504. PubMed ID: 26351900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gadolinium-doped iron oxide nanoparticles induced magnetic field hyperthermia combined with radiotherapy increases tumour response by vascular disruption and improved oxygenation.
    Jiang PS; Tsai HY; Drake P; Wang FN; Chiang CS
    Int J Hyperthermia; 2017 Nov; 33(7):770-778. PubMed ID: 28540811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on hyperthermia via nanoparticle-mediated therapy.
    Sohail A; Ahmad Z; Bég OA; Arshad S; Sherin L
    Bull Cancer; 2017 May; 104(5):452-461. PubMed ID: 28385267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical assessment of a criterion for the optimal choice of the operative conditions in magnetic nanoparticle hyperthermia on a realistic model of the human head.
    Bellizzi G; Bucci OM; Chirico G
    Int J Hyperthermia; 2016 Sep; 32(6):688-703. PubMed ID: 27268850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic fluid hyperthermia simulations in evaluation of SAR calculation methods.
    Papadopoulos C; Efthimiadou EK; Pissas M; Fuentes D; Boukos N; Psycharis V; Kordas G; Loukopoulos VC; Kagadis GC
    Phys Med; 2020 Mar; 71():39-52. PubMed ID: 32088564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern.
    Salloum M; Ma R; Zhu L
    Int J Hyperthermia; 2009 Jun; 25(4):309-21. PubMed ID: 19670098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in-vivo experimental study of temperature elevations in animal tissue during magnetic nanoparticle hyperthermia.
    Salloum M; Ma R; Zhu L
    Int J Hyperthermia; 2008 Nov; 24(7):589-601. PubMed ID: 18979310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic nanoparticle-mediated hyperthermia therapy induces tumour growth inhibition by apoptosis and Hsp90/AKT modulation.
    Shetake NG; Kumar A; Gaikwad S; Ray P; Desai S; Ningthoujam RS; Vatsa RK; Pandey BN
    Int J Hyperthermia; 2015; 31(8):909-19. PubMed ID: 26416812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimally required heat doses for various tumour sizes in induction heating cancer therapy determined by computer simulation using experimental data.
    Yamada K; Oda T; Hashimoto S; Enomoto T; Ohkohchi N; Ikeda H; Yanagihara H; Kishimoto M; Kita E; Tasaki A; Satake M; Ikehata Y; Nagae H; Nagano I; Takagi T; Kanamori T
    Int J Hyperthermia; 2010; 26(5):465-74. PubMed ID: 20377361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy.
    Dutz S; Hergt R
    Int J Hyperthermia; 2013 Dec; 29(8):790-800. PubMed ID: 23968194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic particle hyperthermia--a promising tumour therapy?
    Dutz S; Hergt R
    Nanotechnology; 2014 Nov; 25(45):452001. PubMed ID: 25337919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich's "magic (nano)bullet" for cancer theranostics?
    Datta NR; Krishnan S; Speiser DE; Neufeld E; Kuster N; Bodis S; Hofmann H
    Cancer Treat Rev; 2016 Nov; 50():217-227. PubMed ID: 27756009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.