These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24074066)

  • 1. Thermodynamic efficiency of pumped heat electricity storage.
    Thess A
    Phys Rev Lett; 2013 Sep; 111(11):110602. PubMed ID: 24074066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Storage of Heat, Cold and Electricity.
    Stamatiou A; Ammann A; Abdon A; Fischer LJ; Gwerder D; Worlitschek J
    Chimia (Aarau); 2015; 69(12):777-779. PubMed ID: 26842329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic Evaluation and Sensitivity Analysis of a Novel Compressed Air Energy Storage System Incorporated with a Coal-Fired Power Plant.
    Pan P; Zhang M; Peng W; Chen H; Xu G; Liu T
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced Exergy Analysis of Adiabatic Underwater Compressed Air Energy Storage System.
    Szablowski L; Morosuk T
    Entropy (Basel); 2022 Dec; 25(1):. PubMed ID: 36673218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing Free Energy From Nature For Efficient Operation of Compressed Air Energy Storage System and Unlocking the Potential of Renewable Power Generation.
    Venkataramani G; Ramalingam V; Viswanathan K
    Sci Rep; 2018 Jul; 8(1):9981. PubMed ID: 29967331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technological Research of a Clean Energy Router Based on Advanced Adiabatic Compressed Air Energy Storage System.
    Ni C; Xue X; Mei S; Zhang XP; Chen X
    Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33419330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic Analysis of a Hybrid Trigenerative Compressed Air Energy Storage System with Solar Thermal Energy.
    Chen X; Xue X; Si Y; Liu C; Chen L; Guo Y; Mei S
    Entropy (Basel); 2020 Jul; 22(7):. PubMed ID: 33286536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid pressure retarded osmosis-membrane distillation system for power generation from low-grade heat: thermodynamic analysis and energy efficiency.
    Lin S; Yip NY; Cath TY; Osuji CO; Elimelech M
    Environ Sci Technol; 2014 May; 48(9):5306-13. PubMed ID: 24724732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic Performance of a Brayton Pumped Heat Energy Storage System: Influence of Internal and External Irreversibilities.
    Pérez-Gallego D; Gonzalez-Ayala J; Calvo Hernández A; Medina A
    Entropy (Basel); 2021 Nov; 23(12):. PubMed ID: 34945870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Techno-economic analysis of wind power integrated with both compressed air energy storage (CAES) and biomass gasification energy storage (BGES) for power generation.
    Diyoke C; Aneke M; Wang M; Wu C
    RSC Adv; 2018 Jun; 8(39):22004-22022. PubMed ID: 35541755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy Efficiency and Performance Limiting Effects in Thermo-Osmotic Energy Conversion from Low-Grade Heat.
    Straub AP; Elimelech M
    Environ Sci Technol; 2017 Nov; 51(21):12925-12937. PubMed ID: 29022347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-Spray-Cooled Quasi-Isothermal Compression Method: Water-Spray Flow Improvement.
    Jia G; Nian X; Xu W; Shi Y; Cai M
    Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34204016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat.
    Zhu X; Rahimi M; Gorski CA; Logan B
    ChemSusChem; 2016 Apr; 9(8):873-9. PubMed ID: 26990485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermophotovoltaic efficiency of 40.
    LaPotin A; Schulte KL; Steiner MA; Buznitsky K; Kelsall CC; Friedman DJ; Tervo EJ; France RM; Young MR; Rohskopf A; Verma S; Wang EN; Henry A
    Nature; 2022 Apr; 604(7905):287-291. PubMed ID: 35418635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators.
    Wang J; Ye Z; Lai Y; Li W; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062134. PubMed ID: 26172688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-particle stochastic heat engine.
    Rana S; Pal PS; Saha A; Jayannavar AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carnot cycle for interacting particles in the absence of thermal noise.
    Curado EM; Souza AM; Nobre FD; Andrade RF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022117. PubMed ID: 25353432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic Bound on Heat-to-Power Conversion.
    Luo R; Benenti G; Casati G; Wang J
    Phys Rev Lett; 2018 Aug; 121(8):080602. PubMed ID: 30192581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentrating solar thermal power.
    Müller-Steinhagen H
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110433. PubMed ID: 23816910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.