BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24074107)

  • 1. Role of surface-segregation-driven intermixing on the thermal transport through planar Si/Ge superlattices.
    Chen P; Katcho NA; Feser JP; Li W; Glaser M; Schmidt OG; Cahill DG; Mingo N; Rastelli A
    Phys Rev Lett; 2013 Sep; 111(11):115901. PubMed ID: 24074107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the Coherent Phonon Transport in SiGe Nanowires with Dense Si/Ge Interfaces.
    Cheng Y; Xiong S; Zhang T
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mode confinement, interface mass-smudging, and sample length effects on phonon transport in thin nanocomposite superlattices.
    Srivastava GP; Thomas IO
    J Phys Condens Matter; 2019 Feb; 31(5):055303. PubMed ID: 30523937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Thermoelectric Power Factor Realization in Si-Rich SiGe/Si Superlattices by Super-Controlled Interfaces.
    Taniguchi T; Ishibe T; Naruse N; Mera Y; Alam MM; Sawano K; Nakamura Y
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25428-25434. PubMed ID: 32427454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinants of thermal conductivity and diffusivity in nanostructural semiconductors.
    Yang CC; Armellin J; Li S
    J Phys Chem B; 2008 Feb; 112(5):1482-6. PubMed ID: 18193865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire.
    Mu X; Wang L; Yang X; Zhang P; To AC; Luo T
    Sci Rep; 2015 Nov; 5():16697. PubMed ID: 26568511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonon Bridge Effect in Superlattices of Thermoelectric TiNiSn/HfNiSn With Controlled Interface Intermixing.
    Heinz S; Angel EC; Trapp M; Kleebe HJ; Jakob G
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32630581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Si/Ge superlattice nanowires with ultralow thermal conductivity.
    Hu M; Poulikakos D
    Nano Lett; 2012 Nov; 12(11):5487-94. PubMed ID: 23106449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conductivity of Si-Ge quantum dot superlattices.
    Haskins JB; Kınacı A; Cağın T
    Nanotechnology; 2011 Apr; 22(15):155701. PubMed ID: 21389580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local structure and phase change behavior in interfacial intermixing GeTe-Sb
    Han G; Liu F; Li W; Huang Y; Sun N; Ye F
    J Phys Condens Matter; 2020 Jun; 32(25):255401. PubMed ID: 32050167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon transport in the nano-system of Si and SiGe films with Ge nanodots and approach to ultralow thermal conductivity.
    Taniguchi T; Terada T; Komatsubara Y; Ishibe T; Konoike K; Sanada A; Naruse N; Mera Y; Nakamura Y
    Nanoscale; 2021 Mar; 13(9):4971-4977. PubMed ID: 33629704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What is the thermal conductivity limit of silicon germanium alloys?
    Lee Y; Pak AJ; Hwang GS
    Phys Chem Chem Phys; 2016 Jul; 18(29):19544-8. PubMed ID: 27398924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Ge/Si intermixing processes at the Bi/Ge/Si(111) surface.
    Paul N; Filimonov S; Cherepanov V; Cakmak M; Voigtländer B
    Phys Rev Lett; 2007 Apr; 98(16):166104. PubMed ID: 17501435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplay of strain and intermixing effects on direct-bandgap optical transition in strained Ge-on-Si under thermal annealing.
    Lee C; Yoo YS; Ki B; Jang MH; Lim SH; Song HG; Cho JH; Oh J; Cho YH
    Sci Rep; 2019 Aug; 9(1):11709. PubMed ID: 31406149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological and compositional evolution of the ge/si(001) surface during exposure to a si flux.
    Rastelli A; von Känel H; Albini G; Raiteri P; Migas DB; Miglio L
    Phys Rev Lett; 2003 May; 90(21):216104. PubMed ID: 12786568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonon transport control by nanoarchitecture including epitaxial Ge nanodots for Si-based thermoelectric materials.
    Yamasaka S; Nakamura Y; Ueda T; Takeuchi S; Sakai A
    Sci Rep; 2015 Oct; 5():14490. PubMed ID: 26434678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-Plane Thermal Conductivity of Radial and Planar Si/SiO
    Li G; Yarali M; Cocemasov A; Baunack S; Nika DL; Fomin VM; Singh S; Gemming T; Zhu F; Mavrokefalos A; Schmidt OG
    ACS Nano; 2017 Aug; 11(8):8215-8222. PubMed ID: 28771320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Thermal Transport Characteristics of Nanocomposites.
    Srivastava GP; Thomas IO
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32260079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of interface angle on the thermal conductivity of Si/Ge superlattices.
    Liu YG; Ren GL; Chernatynskiy A; Zhao XF
    Phys Chem Chem Phys; 2021 Oct; 23(40):23225-23232. PubMed ID: 34623359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface segregation of Ge at SiGe(001) by concerted exchange pathways.
    Bogusławski P; Bernholc J
    Phys Rev Lett; 2002 Apr; 88(16):166101. PubMed ID: 11955240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.