These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24075586)

  • 1. Interobserver reproducibility of signal intensity ratio on magnetic resonance angiography for hemodynamic impact of intracranial atherosclerosis.
    Leng X; Ip HL; Soo Y; Leung T; Liu L; Feldmann E; Wong KS; Liebeskind DS
    J Stroke Cerebrovasc Dis; 2013 Nov; 22(8):e615-9. PubMed ID: 24075586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diminished Signal Intensities Distal to Intracranial Arterial Stenosis on Time-of-Flight MR Angiography Might Indicate Delayed Cerebral Perfusion.
    Lan L; Leng X; Abrigo J; Fang H; Ip VH; Soo YO; Leung TW; Yu SC; Wong LK
    Cerebrovasc Dis; 2016; 42(3-4):232-9. PubMed ID: 27173386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic resonance angiography signal intensity as a marker of hemodynamic impairment in intracranial arterial stenosis.
    Leng X; Wong KS; Soo Y; Leung T; Zou X; Wang Y; Feldmann E; Liu L; Liebeskind DS
    PLoS One; 2013; 8(11):e80124. PubMed ID: 24302997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal intensity changes for the middle cerebral artery on 3-dimensional time-of-flight magnetic resonance angiography indicate acute hemodynamic changes after carotid endarterectomy.
    Sato K; Kurata A; Oka H; Kan S; Inoue Y; Asano Y; Fujii K
    J Stroke Cerebrovasc Dis; 2013 Nov; 22(8):e511-5. PubMed ID: 23810351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conventional T2-Weighted Imaging to Detect High-Grade Stenosis and Occlusion of Internal Carotid Artery, Vertebral Artery, and Basilar Artery.
    Li Q; Tian CL; Yang YW; Lou X; Yu SY
    J Stroke Cerebrovasc Dis; 2015 Jul; 24(7):1591-6. PubMed ID: 25900410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive fractional flow on MRA predicts stroke risk of intracranial stenosis.
    Liebeskind DS; Kosinski AS; Lynn MJ; Scalzo F; Fong AK; Fariborz P; Chimowitz MI; Feldmann E
    J Neuroimaging; 2015; 25(1):87-91. PubMed ID: 24593693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcranial Doppler sonography and magnetic resonance angiography in the assessment of collateral hemispheric flow in patients with carotid artery disease.
    Anzola GP; Gasparotti R; Magoni M; Prandini F
    Stroke; 1995 Feb; 26(2):214-7. PubMed ID: 7831690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The advantage of high-resolution MRI in evaluating basilar plaques: a comparison study with MRA.
    Kim YS; Lim SH; Oh KW; Kim JY; Koh SH; Kim J; Heo SH; Chang DI; Lee YJ; Kim HY
    Atherosclerosis; 2012 Oct; 224(2):411-6. PubMed ID: 22920240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased Signal Intensity Ratio on MRA Reflects Misery Perfusion on SPECT in Patients with Intracranial Stenosis.
    Miura M; Nakajima M; Fujimoto A; Shiraishi S; Liebeskind DS; Ando Y
    J Neuroimaging; 2018 Mar; 28(2):206-211. PubMed ID: 29215168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-of-flight MRA signal intensity predicts the cerebral hemodynamic status after superficial temporal artery to middle cerebral artery anastomosis.
    Matsuo S; Nakamizo A; Fujioka Y; Amano T; Yasaka M; Okada Y; Nagata S
    J Clin Neurosci; 2019 Jan; 59():124-129. PubMed ID: 30396815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angiographic pattern of symptomatic severe M1 stenosis: comparison with presenting symptoms, infarct patterns, perfusion status, and outcome after recanalization.
    Choi JW; Kim JK; Choi BS; Lim HK; Kim SJ; Kim JS; Suh DC
    Cerebrovasc Dis; 2010 Feb; 29(3):297-303. PubMed ID: 20090322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of intracranial atherosclerotic steno-occlusive disease with 3D time-of-flight magnetic resonance angiography with sensitivity encoding at 3T.
    Choi CG; Lee DH; Lee JH; Pyun HW; Kang DW; Kwon SU; Kim JK; Kim SJ; Suh DC
    AJNR Am J Neuroradiol; 2007 Mar; 28(3):439-46. PubMed ID: 17353309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of morphometry and intensity features of intracranial arteries from 3D TOF MRA using the intracranial artery feature extraction (iCafe): A reproducibility study.
    Chen L; Mossa-Basha M; Sun J; Hippe DS; Balu N; Yuan Q; Pimentel K; Hatsukami TS; Hwang JN; Yuan C
    Magn Reson Imaging; 2019 Apr; 57():293-302. PubMed ID: 30580079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple assessment of cerebral hemodynamics using single-slab 3D time-of-flight MR angiography in patients with cervical internal carotid artery steno-occlusive diseases: comparison with quantitative perfusion single-photon emission CT.
    Hirooka R; Ogasawara K; Inoue T; Fujiwara S; Sasaki M; Chida K; Ishigaki D; Kobayashi M; Nishimoto H; Otawara Y; Tsushima E; Ogawa A
    AJNR Am J Neuroradiol; 2009 Mar; 30(3):559-63. PubMed ID: 19039042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atherosclerosis of middle cerebral artery: evaluation with high-resolution MR imaging at 3T.
    Li ML; Xu WH; Song L; Feng F; You H; Ni J; Gao S; Cui LY; Jin ZY
    Atherosclerosis; 2009 Jun; 204(2):447-52. PubMed ID: 19041971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamic assessment for intracranial atherosclerosis from angiographic images: a clinical validation study.
    Yang P; Wan S; Wang J; Hu Y; Ma N; Wang X; Zhang Y; Zhang L; Zhu X; Shen F; Zheng Q; Wang M; Leng X; Fiehler J; Siddiqui AH; Miao Z; Xiang J; Liu J
    J Neurointerv Surg; 2024 Jan; 16(2):204-208. PubMed ID: 37185108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of cerebral hyperperfusion after carotid endarterectomy using middle cerebral artery signal intensity in preoperative single-slab 3-dimensional time-of-flight magnetic resonance angiography.
    Kuroda H; Ogasawara K; Hirooka R; Kobayashi M; Fujiwara S; Chida K; Ishigaki D; Otawara Y; Ogawa A
    Neurosurgery; 2009 Jun; 64(6):1065-71; discussion 1071-2. PubMed ID: 19487885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing.
    Lin Z; Zhang X; Guo L; Wang K; Jiang Y; Hu X; Huang Y; Wei J; Ma S; Liu Y; Zhu L; Zhuo Z; Liu J; Wang X
    J Magn Reson Imaging; 2019 Dec; 50(6):1843-1851. PubMed ID: 30980468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Validation of Simultaneous Non-Contrast Angiography and intraPlaque Hemorrhage (SNAP) Magnetic Resonance Angiography: An Intracranial Artery Study.
    Wang J; Guan M; Yamada K; Hippe DS; Kerwin WS; Yuan C; Börnert P; Zhao X
    PLoS One; 2016; 11(2):e0149130. PubMed ID: 26863432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Severity assessment of intracranial large artery stenosis by pressure gradient measurements: A feasibility study.
    Han YF; Liu WH; Chen XL; Xiong YY; Yin Q; Xu GL; Zhu WS; Zhang RL; Ma MM; Li M; Dai QL; Sun W; Liu DZ; Duan LH; Liu XF
    Catheter Cardiovasc Interv; 2016 Aug; 88(2):255-61. PubMed ID: 26774257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.