BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24076067)

  • 21. Ad libitum consumption of protein- or peptide-sucrose solutions stimulates egg formation by prolonging the vitellogenic phase of oogenesis in anautogenous mosquitoes.
    Harrison RE; Chen K; South L; Lorenzi A; Brown MR; Strand MR
    Parasit Vectors; 2022 Apr; 15(1):127. PubMed ID: 35413939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insulin stimulates ecdysteroid production through a conserved signaling cascade in the mosquito Aedes aegypti.
    Riehle MA; Brown MR
    Insect Biochem Mol Biol; 1999 Oct; 29(10):855-60. PubMed ID: 10528406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of the gut-specific carboxypeptidase: a study using the binary Gal4/UAS system in the mosquito Aedes aegypti.
    Zhao B; Kokoza VA; Saha TT; Wang S; Roy S; Raikhel AS
    Insect Biochem Mol Biol; 2014 Nov; 54():1-10. PubMed ID: 25152428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti.
    Bryant B; Macdonald W; Raikhel AS
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22391-8. PubMed ID: 21115818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of ovary ecdysteroidogenic hormone I in the nervous system and gut of mosquitoes.
    Brown MR; Cao C
    J Insect Sci; 2001; 1():3. PubMed ID: 15455063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localization of the mosquito insulin receptor homolog (MIR) in reproducing yellow fever mosquitoes (Aedes aegypti).
    Helbling P; Graf R
    J Insect Physiol; 1998 Dec; 44(12):1127-1135. PubMed ID: 12770311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AaCAT1 of the yellow fever mosquito, Aedes aegypti: a novel histidine-specific amino acid transporter from the SLC7 family.
    Hansen IA; Boudko DY; Shiao SH; Voronov DA; Meleshkevitch EA; Drake LL; Aguirre SE; Fox JM; Attardo GM; Raikhel AS
    J Biol Chem; 2011 Mar; 286(12):10803-13. PubMed ID: 21262963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ecdysis triggering hormone signaling in the yellow fever mosquito Aedes aegypti.
    Dai L; Adams ME
    Gen Comp Endocrinol; 2009 May; 162(1):43-51. PubMed ID: 19298818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased Akt signaling in the mosquito fat body increases adult survivorship.
    Arik AJ; Hun LV; Quicke K; Piatt M; Ziegler R; Scaraffia PY; Badgandi H; Riehle MA
    FASEB J; 2015 Apr; 29(4):1404-13. PubMed ID: 25550465
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Juvenile hormone and its receptor methoprene-tolerant promote ribosomal biogenesis and vitellogenesis in the
    Wang JL; Saha TT; Zhang Y; Zhang C; Raikhel AS
    J Biol Chem; 2017 Jun; 292(24):10306-10315. PubMed ID: 28446607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A chitin-like component in Aedes aegypti eggshells, eggs and ovaries.
    Moreira MF; Dos Santos AS; Marotta HR; Mansur JF; Ramos IB; Machado EA; Souza GH; Eberlin MN; Kaiser CR; Kramer KJ; Muthukrishnan S; Vasconcellos AM
    Insect Biochem Mol Biol; 2007 Dec; 37(12):1249-61. PubMed ID: 17967344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ecdysteroid titers and developmental expression of ecdysteroid-regulated genes during metamorphosis of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae).
    Margam VM; Gelman DB; Palli SR
    J Insect Physiol; 2006 Jun; 52(6):558-68. PubMed ID: 16580015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular characterization of insulin-like peptides in the yellow fever mosquito, Aedes aegypti: expression, cellular localization, and phylogeny.
    Riehle MA; Fan Y; Cao C; Brown MR
    Peptides; 2006 Nov; 27(11):2547-60. PubMed ID: 16934367
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of ovary-specific genes in relation to egg maturation and female nutritional condition in the mosquitoes Georgecraigius atropalpus and Aedes aegypti (Diptera: Culicidae).
    Telang A; Rechel JA; Brandt JR; Donnell DM
    J Insect Physiol; 2013 Mar; 59(3):283-94. PubMed ID: 23238126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae).
    Telang A; Frame L; Brown MR
    J Exp Biol; 2007 Mar; 210(Pt 5):854-64. PubMed ID: 17297145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.
    Eisen L; Moore CG
    J Med Entomol; 2013 May; 50(3):467-78. PubMed ID: 23802440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional characterization of aquaporins and aquaglyceroporins of the yellow fever mosquito, Aedes aegypti.
    Drake LL; Rodriguez SD; Hansen IA
    Sci Rep; 2015 Jan; 5():7795. PubMed ID: 25589229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuropeptide F and its expression in the yellow fever mosquito, Aedes aegypti.
    Stanek DM; Pohl J; Crim JW; Brown MR
    Peptides; 2002 Aug; 23(8):1367-78. PubMed ID: 12182937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple forms of cerebral peptides with steroidogenic functions in pupal and adult brains of the yellow fever mosquito, Aedes aegypti.
    Whisenton LR; Kelly TJ; Bollenbacher WE
    Mol Cell Endocrinol; 1987 Mar; 50(1-2):3-14. PubMed ID: 3582726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A critical role of the nuclear receptor HR3 in regulation of gonadotrophic cycles of the mosquito Aedes aegypti.
    Mane-Padros D; Cruz J; Cheng A; Raikhel AS
    PLoS One; 2012; 7(9):e45019. PubMed ID: 23049766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.