These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 2407608)

  • 41. A cytoskeleton-related gene, uso1, is required for intracellular protein transport in Saccharomyces cerevisiae.
    Nakajima H; Hirata A; Ogawa Y; Yonehara T; Yoda K; Yamasaki M
    J Cell Biol; 1991 Apr; 113(2):245-60. PubMed ID: 2010462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. REF2 encodes an RNA-binding protein directly involved in yeast mRNA 3'-end formation.
    Russnak R; Nehrke KW; Platt T
    Mol Cell Biol; 1995 Mar; 15(3):1689-97. PubMed ID: 7862160
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of RTF1, a novel gene important for TATA site selection by TATA box-binding protein in Saccharomyces cerevisiae.
    Stolinski LA; Eisenmann DM; Arndt KM
    Mol Cell Biol; 1997 Aug; 17(8):4490-500. PubMed ID: 9234706
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Glc7 type 1 protein phosphatase of Saccharomyces cerevisiae is required for cell cycle progression in G2/M.
    Hisamoto N; Sugimoto K; Matsumoto K
    Mol Cell Biol; 1994 May; 14(5):3158-65. PubMed ID: 8164671
    [TBL] [Abstract][Full Text] [Related]  

  • 45. TPD1 of Saccharomyces cerevisiae encodes a protein phosphatase 2C-like activity implicated in tRNA splicing and cell separation.
    Robinson MK; van Zyl WH; Phizicky EM; Broach JR
    Mol Cell Biol; 1994 Jun; 14(6):3634-45. PubMed ID: 8196609
    [TBL] [Abstract][Full Text] [Related]  

  • 46. KEX2 mutations suppress RNA polymerase II mutants and alter the temperature range of yeast cell growth.
    Martin C; Young RA
    Mol Cell Biol; 1989 Jun; 9(6):2341-9. PubMed ID: 2668732
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular cloning of the DAC2/FUS3 gene essential for pheromone-induced G1-arrest of the cell cycle in Saccharomyces cerevisiae.
    Fujimura H
    Curr Genet; 1990 Dec; 18(5):395-400. PubMed ID: 2078866
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae.
    Ajimura M; Leem SH; Ogawa H
    Genetics; 1993 Jan; 133(1):51-66. PubMed ID: 8417989
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mutations in cell division cycle genes CDC36 and CDC39 activate the Saccharomyces cerevisiae mating pheromone response pathway.
    de Barros Lopes M; Ho JY; Reed SI
    Mol Cell Biol; 1990 Jun; 10(6):2966-72. PubMed ID: 2111445
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Saccharomyces cerevisiae cell lysis mutations cly5 and cly7 define temperature-sensitive alleles of PKC1, the gene encoding yeast protein kinase C.
    Baymiller J; McCullough JE
    Yeast; 1997 Mar; 13(4):305-12. PubMed ID: 9133734
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Autophagic death after cell cycle arrest at the restrictive temperature in temperature-sensitive cell division cycle and secretory mutants of the yeast Saccharomyces cerevisiae.
    Motizuki M; Yokota S; Tsurugi K
    Eur J Cell Biol; 1995 Nov; 68(3):275-87. PubMed ID: 8603680
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae.
    Ivanov EL; Sugawara N; White CI; Fabre F; Haber JE
    Mol Cell Biol; 1994 May; 14(5):3414-25. PubMed ID: 8164689
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of a second nuclear gene, AEP1, required for expression of the mitochondrial OLI1 gene in Saccharomyces cerevisiae.
    Payne MJ; Finnegan PM; Smooker PM; Lukins HB
    Curr Genet; 1993; 24(1-2):126-35. PubMed ID: 8358819
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The mapping of chromosomes in Saccharomyces cerevisiae. I. A cosmid vector designed to establish, by cloning into cdc-mutants, numerous start loci for chromosome walking in the yeast genome.
    Breter HJ; Knoop MT; Kirchen H
    Gene; 1987; 53(2-3):181-90. PubMed ID: 3301531
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mutations in a Saccharomyces cerevisiae host showing increased holding stability of the heterologous plasmid pSR1.
    Irie K; Araki H; Oshima Y
    Mol Gen Genet; 1991 Feb; 225(2):257-65. PubMed ID: 2005867
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of GCD14 and GCD15, novel genes required for translational repression of GCN4 mRNA in Saccharomyces cerevisiae.
    Cuesta R; Hinnebusch AG; Tamame M
    Genetics; 1998 Mar; 148(3):1007-20. PubMed ID: 9539420
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae.
    Hartwell LH
    J Bacteriol; 1973 Sep; 115(3):966-74. PubMed ID: 4580573
    [TBL] [Abstract][Full Text] [Related]  

  • 58. end5, end6, and end7: mutations that cause actin delocalization and block the internalization step of endocytosis in Saccharomyces cerevisiae.
    Munn AL; Stevenson BJ; Geli MI; Riezman H
    Mol Biol Cell; 1995 Dec; 6(12):1721-42. PubMed ID: 8590801
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ore2, a mutation affecting proline biosynthesis in the yeast Saccharomyces cerevisiae, leads to a cdc phenotype.
    Neuville P; Aigle M
    Mol Gen Genet; 1992 Aug; 234(2):193-200. PubMed ID: 1508147
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New temperature-sensitive mutants of Saccharomyces cerevisiae affecting DNA replication.
    Dumas LB; Lussky JP; McFarland EJ; Shampay J
    Mol Gen Genet; 1982; 187(1):42-6. PubMed ID: 6761543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.