These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 2407613)

  • 1. Identification and characterization of a mutation affecting the division arrest signaling of the pheromone response pathway in Saccharomyces cerevisiae.
    Fujimura H
    Genetics; 1990 Feb; 124(2):275-82. PubMed ID: 2407613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cloning of the DAC2/FUS3 gene essential for pheromone-induced G1-arrest of the cell cycle in Saccharomyces cerevisiae.
    Fujimura H
    Curr Genet; 1990 Dec; 18(5):395-400. PubMed ID: 2078866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yeast G-protein homolog is involved in the mating pheromone signal transduction system.
    Fujimura HA
    Mol Cell Biol; 1989 Jan; 9(1):152-8. PubMed ID: 2494429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mating-defective ste mutations are suppressed by cell division cycle start mutations in Saccharomyces cerevisiae.
    Shuster JR
    Mol Cell Biol; 1982 Sep; 2(9):1052-63. PubMed ID: 6757719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of STE genes in the mating factor signaling pathway mediated by GPA1 in Saccharomyces cerevisiae.
    Nakayama N; Kaziro Y; Arai K; Matsumoto K
    Mol Cell Biol; 1988 Sep; 8(9):3777-83. PubMed ID: 3065623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The DAC2/FUS3 protein kinase is not essential for transcriptional activation of the mating pheromone response pathway in Saccharomyces cerevisiae.
    Fujimura HA
    Mol Gen Genet; 1992 Nov; 235(2-3):450-2. PubMed ID: 1465115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stoichiometry of G protein subunits affects the Saccharomyces cerevisiae mating pheromone signal transduction pathway.
    Cole GM; Stone DE; Reed SI
    Mol Cell Biol; 1990 Feb; 10(2):510-7. PubMed ID: 2105453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast homolog of mammalian mitogen-activated protein kinase, FUS3/DAC2 kinase, is required both for cell fusion and for G1 arrest of the cell cycle and morphological changes by the cdc37 mutation.
    Fujimura HA
    J Cell Sci; 1994 Sep; 107 ( Pt 9)():2617-22. PubMed ID: 7844175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppressors of a gpa1 mutation cause sterility in Saccharomyces cerevisiae.
    Miyajima I; Nakayama N; Nakafuku M; Kaziro Y; Arai K; Matsumoto K
    Genetics; 1988 Aug; 119(4):797-804. PubMed ID: 3137119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational activation of the STE5 gene product bypasses the requirement for G protein beta and gamma subunits in the yeast pheromone response pathway.
    Hasson MS; Blinder D; Thorner J; Jenness DD
    Mol Cell Biol; 1994 Feb; 14(2):1054-65. PubMed ID: 8289786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mating in Saccharomyces cerevisiae: the role of the pheromone signal transduction pathway in the chemotropic response to pheromone.
    Schrick K; Garvik B; Hartwell LH
    Genetics; 1997 Sep; 147(1):19-32. PubMed ID: 9286665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining mutations in the incoming and outgoing pheromone signal pathways causes a synergistic mating defect in Saccharomyces cerevisiae.
    Giot L; DeMattei C; Konopka JB
    Yeast; 1999 Jun; 15(9):765-80. PubMed ID: 10398345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast pheromone response pathway: characterization of a suppressor that restores mating to receptorless mutants.
    Clark KL; Sprague GF
    Mol Cell Biol; 1989 Jun; 9(6):2682-94. PubMed ID: 2548085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Truncated forms of a novel yeast protein suppress the lethality of a G protein alpha subunit deficiency by interacting with the beta subunit.
    Spain BH; Koo D; Ramakrishnan M; Dzudzor B; Colicelli J
    J Biol Chem; 1995 Oct; 270(43):25435-44. PubMed ID: 7592711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the yeast pheromone response pathway by G protein subunits.
    Nomoto S; Nakayama N; Arai K; Matsumoto K
    EMBO J; 1990 Mar; 9(3):691-6. PubMed ID: 2107073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Order of action of components in the yeast pheromone response pathway revealed with a dominant allele of the STE11 kinase and the multiple phosphorylation of the STE7 kinase.
    Cairns BR; Ramer SW; Kornberg RD
    Genes Dev; 1992 Jul; 6(7):1305-18. PubMed ID: 1628833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The DAF2-2 mutation, a dominant inhibitor of the STE4 step in the alpha-factor signaling pathway of Saccharomyces cerevisiae MAT alpha cells.
    Cross FR
    Genetics; 1990 Oct; 126(2):301-8. PubMed ID: 2245911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function of the ste signal transduction pathway for mating pheromones sustains MAT alpha 1 transcription in Saccharomyces cerevisiae.
    Mukai Y; Harashima S; Oshima Y
    Mol Cell Biol; 1993 Apr; 13(4):2050-60. PubMed ID: 8455598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overproduction of the yeast STE12 protein leads to constitutive transcriptional induction.
    Dolan JW; Fields S
    Genes Dev; 1990 Apr; 4(4):492-502. PubMed ID: 2193847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces cerevisiae mutants unresponsive to alpha-factor pheromone: alpha-factor binding and extragenic suppression.
    Jenness DD; Goldman BS; Hartwell LH
    Mol Cell Biol; 1987 Apr; 7(4):1311-9. PubMed ID: 3037311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.