BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 24076153)

  • 1. Chondroitinase ABC combined with neurotrophin NT-3 secretion and NR2D expression promotes axonal plasticity and functional recovery in rats with lateral hemisection of the spinal cord.
    García-Alías G; Petrosyan HA; Schnell L; Horner PJ; Bowers WJ; Mendell LM; Fawcett JW; Arvanian VL
    J Neurosci; 2011 Dec; 31(49):17788-99. PubMed ID: 22159095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shinbaro2 enhances axonal extension beyond the glial scar for functional recovery in rats with contusive spinal cord injury.
    Hong JY; Lee J; Kim H; Yeo C; Jeon WJ; Lee YJ; Ha IH
    Biomed Pharmacother; 2023 Dec; 168():115710. PubMed ID: 37862963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury.
    Tysseling-Mattiace VM; Sahni V; Niece KL; Birch D; Czeisler C; Fehlings MG; Stupp SI; Kessler JA
    J Neurosci; 2008 Apr; 28(14):3814-23. PubMed ID: 18385339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Electrospun Nanofibers on Motor Function Recovery After Spinal Cord Injury: A Systematic Review and Meta-Analysis.
    Haeri Moghaddam N; Hashamdar S; Hamblin MR; Ramezani F
    World Neurosurg; 2024 Jan; 181():96-106. PubMed ID: 37852475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alginate, a bioresorbable material derived from brown seaweed, enhances elongation of amputated axons of spinal cord in infant rats.
    Kataoka K; Suzuki Y; Kitada M; Ohnishi K; Suzuki K; Tanihara M; Ide C; Endo K; Nishimura Y
    J Biomed Mater Res; 2001 Mar; 54(3):373-84. PubMed ID: 11189043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic review and meta-analysis of chondroitinase ABC promotes functional recovery in rat models of spinal cord injury.
    Zhang YY; Xue RR; Yao M; Li ZY; Hu CW; Dai YX; Fang YD; Ding X; Xu JH; Cui XJ; Mo W
    Nutr Neurosci; 2023 Nov; ():1-17. PubMed ID: 37950873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun Fibers for Drug Delivery after Spinal Cord Injury and the Effects of Drug Incorporation on Fiber Properties.
    Johnson CD; D'Amato AR; Gilbert RJ
    Cells Tissues Organs; 2016; 202(1-2):116-135. PubMed ID: 27701153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delivery of TGFβ3 from Magnetically Responsive Coaxial Fibers Reduces Spinal Cord Astrocyte Reactivity In Vitro.
    Funnell JL; Fougere J; Zahn D; Dutz S; Gilbert RJ
    Adv Biol (Weinh); 2024 Jun; ():e2300531. PubMed ID: 38935534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polycaprolactone/graphene oxide/acellular matrix nanofibrous scaffolds with antioxidant and promyelinating features for the treatment of peripheral demyelinating diseases.
    Nagarajan A; Rizwana N; Abraham M; Bhat M; Vetekar A; Thakur G; Chakraborty U; Agarwal V; Nune M
    J Mater Sci Mater Med; 2023 Oct; 34(10):49. PubMed ID: 37796399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifaceted Roles of cAMP Signaling in the Repair Process of Spinal Cord Injury and Related Combination Treatments.
    Zhou G; Wang Z; Han S; Chen X; Li Z; Hu X; Li Y; Gao J
    Front Mol Neurosci; 2022; 15():808510. PubMed ID: 35283731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun Fiber Scaffolds for Engineering Glial Cell Behavior to Promote Neural Regeneration.
    Puhl DL; Funnell JL; Nelson DW; Gottipati MK; Gilbert RJ
    Bioengineering (Basel); 2020 Dec; 8(1):. PubMed ID: 33383759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VPA/PLGA microfibers produced by coaxial electrospinning for the treatment of central nervous system injury.
    Reis KP; Sperling LE; Teixeira C; Sommer L; Colombo M; Koester LS; Pranke P
    Braz J Med Biol Res; 2020; 53(4):e8993. PubMed ID: 32294700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. dBcAMP Rescues the Neurons From Degeneration in Kainic Acid-Injured Hippocampus, Enhances Neurogenesis, Learning, and Memory.
    Rao MS; Abd-El-Basset EM
    Front Behav Neurosci; 2020; 14():18. PubMed ID: 32194381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in nanotherapeutic strategies for spinal cord injury repair.
    Song YH; Agrawal NK; Griffin JM; Schmidt CE
    Adv Drug Deliv Rev; 2019 Aug; 148():38-59. PubMed ID: 30582938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomaterial Approaches to Modulate Reactive Astroglial Response.
    Zuidema JM; Gilbert RJ; Gottipati MK
    Cells Tissues Organs; 2018; 205(5-6):372-395. PubMed ID: 30517922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanofiber Scaffolds as Drug Delivery Systems to Bridge Spinal Cord Injury.
    Faccendini A; Vigani B; Rossi S; Sandri G; Bonferoni MC; Caramella CM; Ferrari F
    Pharmaceuticals (Basel); 2017 Jul; 10(3):. PubMed ID: 28678209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomaterials for Local, Controlled Drug Delivery to the Injured Spinal Cord.
    Ziemba AM; Gilbert RJ
    Front Pharmacol; 2017; 8():245. PubMed ID: 28539887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bridging the lesion-engineering a permissive substrate for nerve regeneration.
    Pires LR; Pêgo AP
    Regen Biomater; 2015 Sep; 2(3):203-14. PubMed ID: 26816642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustained delivery of dbcAMP by poly(propylene carbonate) micron fibers promotes axonal regenerative sprouting and functional recovery after spinal cord hemisection.
    Xia T; Ni S; Li X; Yao J; Qi H; Fan X; Wang J
    Brain Res; 2013 Nov; 1538():41-50. PubMed ID: 24076153
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.