BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 24076154)

  • 1. Crystal structure of rat intestinal alkaline phosphatase--role of crown domain in mammalian alkaline phosphatases.
    Ghosh K; Mazumder Tagore D; Anumula R; Lakshmaiah B; Kumar PP; Singaram S; Matan T; Kallipatti S; Selvam S; Krishnamurthy P; Ramarao M
    J Struct Biol; 2013 Nov; 184(2):182-92. PubMed ID: 24076154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of structural and catalytic differences in rat intestinal alkaline phosphatase isozymes.
    Harada T; Koyama I; Matsunaga T; Kikuno A; Kasahara T; Hassimoto M; Alpers DH; Komoda T
    FEBS J; 2005 May; 272(10):2477-86. PubMed ID: 15885097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation.
    Hehir MJ; Murphy JE; Kantrowitz ER
    J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase.
    Wang J; Stieglitz KA; Kantrowitz ER
    Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase.
    Le Du MH; Lamoure C; Muller BH; Bulgakov OV; Lajeunesse E; Ménez A; Boulain JC
    J Mol Biol; 2002 Mar; 316(4):941-53. PubMed ID: 11884134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian alkaline phosphatase catalysis requires active site structure stabilization via the N-terminal amino acid microenvironment.
    Hoylaerts MF; Ding L; Narisawa S; Van Kerckhoven S; Millan JL
    Biochemistry; 2006 Aug; 45(32):9756-66. PubMed ID: 16893177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function assignment to conserved residues in mammalian alkaline phosphatases.
    Kozlenkov A; Manes T; Hoylaerts MF; Millán JL
    J Biol Chem; 2002 Jun; 277(25):22992-9. PubMed ID: 11937510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational modeling of the catalytic mechanism of human placental alkaline phosphatase (PLAP).
    Borosky GL; Lin S
    J Chem Inf Model; 2011 Oct; 51(10):2538-48. PubMed ID: 21939286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Placental and intestinal alkaline phosphatases are receptors for Aeromonas sobria hemolysin.
    Wada A; Wang AP; Isomoto H; Satomi Y; Takao T; Takahashi A; Awata S; Nomura T; Fujii Y; Kohno S; Okamoto K; Moss J; Millán JL; Hirayama T
    Int J Med Microbiol; 2005 Jan; 294(7):427-35. PubMed ID: 15715171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional analysis of human germ cell alkaline phosphatase by site-specific mutagenesis.
    Watanabe T; Wada N; Chou JY
    Biochemistry; 1992 Mar; 31(12):3051-8. PubMed ID: 1554693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases.
    Murphy JE; Tibbitts TT; Kantrowitz ER
    J Mol Biol; 1995 Nov; 253(4):604-17. PubMed ID: 7473737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic complexity, structure, and characterization of highly active bovine intestinal alkaline phosphatases.
    Manes T; Hoylaerts MF; Müller R; Lottspeich F; Hölke W; Millán JL
    J Biol Chem; 1998 Sep; 273(36):23353-60. PubMed ID: 9722569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102.
    Stec B; Hehir MJ; Brennan C; Nolte M; Kantrowitz ER
    J Mol Biol; 1998 Apr; 277(3):647-62. PubMed ID: 9533886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis and epitope-mapped monoclonal antibodies define a catalytically important conformational difference between human placental and germ cell alkaline phosphatase.
    Hoylaerts MF; Millán JL
    Eur J Biochem; 1991 Dec; 202(2):605-16. PubMed ID: 1722150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites.
    Ma L; Kantrowitz ER
    Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic activity of human placental alkaline phosphatase (PLAP): insights from a computational study.
    Borosky GL
    J Phys Chem B; 2014 Dec; 118(49):14302-13. PubMed ID: 25409280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutually distinctive gradients of three types of intestinal alkaline phosphatase along the longitudinal axis of the rat intestine.
    Shidoji Y; Kim SH
    Digestion; 2004; 70(1):10-5. PubMed ID: 15297774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutation of a single amino acid converts germ cell alkaline phosphatase to placental alkaline phosphatase.
    Watanabe T; Wada N; Kim EE; Wyckoff HW; Chou JY
    J Biol Chem; 1991 Nov; 266(31):21174-8. PubMed ID: 1939159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris.
    Rodriguez E; Wood ZA; Karplus PA; Lei XG
    Arch Biochem Biophys; 2000 Oct; 382(1):105-12. PubMed ID: 11051103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.