These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 24076270)
1. Termination of trigeminal primary afferents on glossopharyngeal-vagal motoneurons: possible neural networks underlying the swallowing phase and visceromotor responses of prey-catching behavior. Kecskes S; Matesz C; Birinyi A Brain Res Bull; 2013 Oct; 99():109-16. PubMed ID: 24076270 [TBL] [Abstract][Full Text] [Related]
2. Possible neural network mediating jaw opening during prey-catching behavior of the frog. Kovalecz G; Kecskes S; Birinyi A; Matesz C Brain Res Bull; 2015 Oct; 119(Pt A):19-24. PubMed ID: 26444079 [TBL] [Abstract][Full Text] [Related]
3. Vestibular afferents to the motoneurons of glossopharyngeal and vagus nerves in the frog, Rana esculenta. Deák A; Bácskai T; Veress G; Matesz C Brain Res; 2009 Aug; 1286():60-5. PubMed ID: 19559680 [TBL] [Abstract][Full Text] [Related]
4. Neural circuits underlying tongue movements for the prey-catching behavior in frog: distribution of primary afferent terminals on motoneurons supplying the tongue. Kecskes S; Matesz C; Gaál B; Birinyi A Brain Struct Funct; 2016 Apr; 221(3):1533-53. PubMed ID: 25575900 [TBL] [Abstract][Full Text] [Related]
5. Neural circuits underlying jaw movements for the prey-catching behavior in frog: distribution of vestibular afferent terminals on motoneurons supplying the jaw. Birinyi A; Rácz N; Kecskes S; Matesz C; Kovalecz G Brain Struct Funct; 2018 May; 223(4):1683-1696. PubMed ID: 29189907 [TBL] [Abstract][Full Text] [Related]
6. Brainstem circuits underlying the prey-catching behavior of the frog. Matesz K; Kecskes S; Bácskai T; Rácz É; Birinyi A Brain Behav Evol; 2014; 83(2):104-11. PubMed ID: 24776991 [TBL] [Abstract][Full Text] [Related]
7. Jaw-opening and -closing premotoneurons in the nucleus of the solitary tract making contacts with laryngeal and pharyngeal afferent terminals in rats. Oka A; Yamamoto M; Takeda R; Ohara H; Sato F; Akhter F; Haque T; Kato T; Sessle BJ; Takada K; Yoshida A Brain Res; 2013 Dec; 1540():48-63. PubMed ID: 24125811 [TBL] [Abstract][Full Text] [Related]
8. Organization within the cranial IX-X complex in ranid frogs: a horseradish peroxidase transport study. Stuesse SL; Cruce WL; Powell KS J Comp Neurol; 1984 Jan; 222(3):358-65. PubMed ID: 6607937 [TBL] [Abstract][Full Text] [Related]
9. Topography and organization of cranial nerve nuclei in the sand lizard, Lacerta agilis. Székely G; Matesz C J Comp Neurol; 1988 Jan; 267(4):525-44. PubMed ID: 3346375 [TBL] [Abstract][Full Text] [Related]
10. Cobaltic lysine study of the morphology and distribution of the cranial nerve efferent neurons (motoneurons and preganglionic parasympathetic neurons) and rostral spinal motoneurons in the Japanese toad. Oka Y; Takeuchi H; Satou M; Ueda K J Comp Neurol; 1987 May; 259(3):400-23. PubMed ID: 3584564 [TBL] [Abstract][Full Text] [Related]
11. Identification and localization of the motor nuclei and sensory projections of the glossopharyngeal, vagus, and hypoglossal nerves of the cockatoo (Cacatua roseicapilla), Cacatuidae. Wild JM J Comp Neurol; 1981 Dec; 203(3):351-77. PubMed ID: 6274918 [TBL] [Abstract][Full Text] [Related]
12. The motor nuclei of the glossopharyngeal-vagal and the accessorius nerves in the rat. Matesz C; Székely G Acta Biol Hung; 1983; 34(2-3):215-29. PubMed ID: 6198828 [TBL] [Abstract][Full Text] [Related]
13. An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal, and vagal nerves in the monkey. Beckstead RM; Norgren R J Comp Neurol; 1979 Apr; 184(3):455-72. PubMed ID: 106071 [TBL] [Abstract][Full Text] [Related]
14. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. Kalia M; Mesulam MM J Comp Neurol; 1980 Sep; 193(2):435-65. PubMed ID: 7440777 [TBL] [Abstract][Full Text] [Related]
15. Vestibulotrigeminal pathways in the frog, Rana esculenta. Matesz C; Kovalecz G; Veress G; Deák A; Rácz E; Bácskai T Brain Res Bull; 2008 Mar; 75(2-4):371-4. PubMed ID: 18331900 [TBL] [Abstract][Full Text] [Related]
16. Central projections and motor nuclei of the facial, glossopharyngeal, and vagus nerves in the mormyrid fish Gnathonemus petersii. Lazar G; Szabo T; Libouban S; Ravaille-Veron M; Toth P; Brändle K J Comp Neurol; 1992 Nov; 325(3):343-58. PubMed ID: 1447406 [TBL] [Abstract][Full Text] [Related]
17. The motor nuclei and primary projections of the IXth, Xth, XIth and XIIth cranial nerves in the monitor lizard, Varanus exanthematicus. Barbas-Henry HA; Lohman AH J Comp Neurol; 1984 Jul; 226(4):565-79. PubMed ID: 6747035 [TBL] [Abstract][Full Text] [Related]
18. Gustatory innervation in the rabbit: central distribution of sensory and motor components of the chorda tympani, glossopharyngeal, and superior laryngeal nerves. Hanamori T; Smith DV J Comp Neurol; 1989 Apr; 282(1):1-14. PubMed ID: 2708588 [TBL] [Abstract][Full Text] [Related]
19. Premotor neurons for trigeminal motor nucleus neurons innervating the jaw-closing and jaw-opening muscles: differential distribution in the lower brainstem of the rat. Li YQ; Takada M; Kaneko T; Mizuno N J Comp Neurol; 1995 Jun; 356(4):563-79. PubMed ID: 7560267 [TBL] [Abstract][Full Text] [Related]
20. Synaptology of the direct projections from the nucleus of the solitary tract to pharyngeal motoneurons in the nucleus ambiguus of the rat. Hayakawa T; Zheng JQ; Seki M; Yajima Y J Comp Neurol; 1998 Apr; 393(3):391-401. PubMed ID: 9548557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]