BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 24076478)

  • 1. Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2.
    Wang WM; Song J; Han X
    J Hazard Mater; 2013 Nov; 262():412-9. PubMed ID: 24076478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution.
    Liou RM; Chen SH; Hung MY; Hsu CS; Lai JY
    Chemosphere; 2005 Mar; 59(1):117-25. PubMed ID: 15698652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biosynthetic schwertmannite as catalyst in Fenton-like reactions for degradation of methyl orange].
    Wang KB; Fang D; Xu ZH; Shi Y; Zheng GY; Zhou LX
    Huan Jing Ke Xue; 2015 Mar; 36(3):995-9. PubMed ID: 25929068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and transformation of schwertmannite in the classic Fenton process.
    Su X; Li X; Ma L; Fan J
    J Environ Sci (China); 2019 Aug; 82():145-154. PubMed ID: 31133260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(II)/Fe(III) ratio on catalytic performance.
    Rusevova K; Kopinke FD; Georgi A
    J Hazard Mater; 2012 Nov; 241-242():433-40. PubMed ID: 23098995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible-light photo-Fenton oxidation of phenol with rGO-α-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: Performance and optimization of the catalyst.
    Wang Y; Liang M; Fang J; Fu J; Chen X
    Chemosphere; 2017 Sep; 182():468-476. PubMed ID: 28521161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic-enhanced Fenton-like degradation of bisphenol A using a bio-synthesized schwertmannite catalyst.
    Li X; Zhang Y; Xie Y; Zeng Y; Li P; Xie T; Wang Y
    J Hazard Mater; 2018 Feb; 344():689-697. PubMed ID: 29154094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced catalytic activity of α-FeOOH-rGO supported on active carbon fiber (ACF) for degradation of phenol and quinolone in the solar-Fenton system.
    Wang Y; Tian H; Yu Y; Hu C
    Chemosphere; 2018 Oct; 208():931-941. PubMed ID: 30068037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabricating Fe
    Li T; Liang J; Zhou L
    J Environ Sci (China); 2020 Dec; 98():186-195. PubMed ID: 33097151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.
    Burton ED; Johnston SG; Kraal P; Bush RT; Claff S
    Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction.
    Lin ZR; Zhao L; Dong YH
    Chemosphere; 2015 Dec; 141():7-12. PubMed ID: 26069944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic.
    Chun J; Lee H; Lee SH; Hong SW; Lee J; Lee C; Lee J
    Chemosphere; 2012 Nov; 89(10):1230-7. PubMed ID: 22884493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of chloride and sulfate on formation of akaganéite and schwertmannite through ferrous biooxidation by Acidithiobacillus ferrooxidans cells.
    Xiong H; Liao Y; Zhou L
    Environ Sci Technol; 2008 Dec; 42(23):8681-6. PubMed ID: 19192781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Schwertmannite Synthesis through Ferrous Ion Chemical Oxidation under Different H2O2 Supply Rates and Its Removal Efficiency for Arsenic from Contaminated Groundwater.
    Liu F; Zhou J; Zhang S; Liu L; Zhou L; Fan W
    PLoS One; 2015; 10(9):e0138891. PubMed ID: 26398214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater.
    Liao Y; Liang J; Zhou L
    Chemosphere; 2011 Apr; 83(3):295-301. PubMed ID: 21239041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of schwertmannite, jarosite and goethite as adsorbents for efficient adsorption of phenanthrene in water and the regeneration of spent adsorbents by heterogeneous fenton-like reaction.
    Meng X; Zhang C; Zhuang J; Zheng G; Zhou L
    Chemosphere; 2020 Apr; 244():125523. PubMed ID: 31812054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic degradation of picric acid by heterogeneous Fenton-based processes.
    Dulova N; Trapido M; Dulov A
    Environ Technol; 2011; 32(3-4):439-46. PubMed ID: 21780711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Photochemical degradation of landfill leachate facilitated by combined schwertmannite and H2O2].
    Wang HR; Song YW; Xu ZH; Cui CH; Zhou LX
    Huan Jing Ke Xue; 2014 Apr; 35(4):1407-13. PubMed ID: 24946595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applying bottom ash as an alternative Fenton catalyst for effective removal of phenol from aqueous environment.
    Hollanda LR; de Souza JAB; Foletto EL; Dotto GL; Chiavone-Filho O
    Environ Sci Pollut Res Int; 2023 Dec; 30(57):120763-120774. PubMed ID: 37943438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemically enhanced degradation of phenol using heterogeneous Fenton-type catalysts.
    He F; Shen XY; Lei LC
    J Environ Sci (China); 2003 May; 15(3):351-5. PubMed ID: 12938986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.