BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24076587)

  • 1. Mapping the p53 transcriptome universe using p53 natural polymorphs.
    Wang B; Niu D; Lam TH; Xiao Z; Ren EC
    Cell Death Differ; 2014 Apr; 21(4):521-32. PubMed ID: 24076587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole-genome cartography of p53 response elements ranked on transactivation potential.
    Tebaldi T; Zaccara S; Alessandrini F; Bisio A; Ciribilli Y; Inga A
    BMC Genomics; 2015 Jun; 16(1):464. PubMed ID: 26081755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p53-directed translational control can shape and expand the universe of p53 target genes.
    Zaccara S; Tebaldi T; Pederiva C; Ciribilli Y; Bisio A; Inga A
    Cell Death Differ; 2014 Oct; 21(10):1522-34. PubMed ID: 24926617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ChIP (chromatin immunoprecipitation) analysis demonstrates co-ordinated binding of two transcription factors to the promoter of the p53 tumour-suppressor gene.
    Polson A; Takahashi P; Reisman D
    Cell Biol Int; 2010 Sep; 34(9):883-91. PubMed ID: 20446924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network.
    Menendez D; Krysiak O; Inga A; Krysiak B; Resnick MA; Schönfelder G
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1406-11. PubMed ID: 16432214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of the p53 gene regulatory network in the developing mouse kidney.
    Li Y; Liu J; McLaughlin N; Bachvarov D; Saifudeen Z; El-Dahr SS
    Physiol Genomics; 2013 Oct; 45(20):948-64. PubMed ID: 24003036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program.
    Gomes NP; Bjerke G; Llorente B; Szostek SA; Emerson BM; Espinosa JM
    Genes Dev; 2006 Mar; 20(5):601-12. PubMed ID: 16510875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human single-nucleotide polymorphisms alter p53 sequence-specific binding at gene regulatory elements.
    Bandele OJ; Wang X; Campbell MR; Pittman GS; Bell DA
    Nucleic Acids Res; 2011 Jan; 39(1):178-89. PubMed ID: 20817676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stathmin/oncoprotein 18, a microtubule regulatory protein, is required for survival of both normal and cancer cell lines lacking the tumor suppressor, p53.
    Carney BK; Cassimeris L
    Cancer Biol Ther; 2010 May; 9(9):699-709. PubMed ID: 20200495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage.
    Ozaki T; Wu D; Sugimoto H; Nagase H; Nakagawara A
    Cell Death Dis; 2013 Apr; 4(4):e610. PubMed ID: 23618908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylated Hsp27 activates ATM-dependent p53 signaling and mediates the resistance of MCF-7 cells to doxorubicin-induced apoptosis.
    Xu Y; Diao Y; Qi S; Pan X; Wang Q; Xin Y; Cao X; Ruan J; Zhao Z; Luo L; Liu C; Yin Z
    Cell Signal; 2013 May; 25(5):1176-85. PubMed ID: 23357534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repression of new p53 targets revealed by ChIP on chip experiments.
    Ceribelli M; Alcalay M; Viganò MA; Mantovani R
    Cell Cycle; 2006 May; 5(10):1102-10. PubMed ID: 16721047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of the legumain gene by p53 in HCT116 cells.
    Yamane T; Murao S; Kato-Ose I; Kashima L; Yuguchi M; Kozuka M; Takeuchi K; Ogita H; Ohkubo I; Ariga H
    Biochem Biophys Res Commun; 2013 Sep; 438(4):613-8. PubMed ID: 23942113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration.
    Hall AE; Lu WT; Godfrey JD; Antonov AV; Paicu C; Moxon S; Dalmay T; Wilczynska A; Muller PA; Bushell M
    Cell Death Dis; 2016 Apr; 7(4):e2184. PubMed ID: 27054339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells.
    Kim NH; Cha YH; Kang SE; Lee Y; Lee I; Cha SY; Ryu JK; Na JM; Park C; Yoon HG; Park GJ; Yook JI; Kim HS
    Cell Cycle; 2013 May; 12(10):1578-87. PubMed ID: 23624843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription factor RFX7 governs a tumor suppressor network in response to p53 and stress.
    Coronel L; Riege K; Schwab K; Förste S; Häckes D; Semerau L; Bernhart SH; Siebert R; Hoffmann S; Fischer M
    Nucleic Acids Res; 2021 Jul; 49(13):7437-7456. PubMed ID: 34197623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin immunoprecipitation-on-chip reveals stress-dependent p53 occupancy in primary normal cells but not in established cell lines.
    Shaked H; Shiff I; Kott-Gutkowski M; Siegfried Z; Haupt Y; Simon I
    Cancer Res; 2008 Dec; 68(23):9671-7. PubMed ID: 19047144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide identification of Wig-1 mRNA targets by RIP-Seq analysis.
    Bersani C; Huss M; Giacomello S; Xu LD; Bianchi J; Eriksson S; Jerhammar F; Alexeyenko A; Vilborg A; Lundeberg J; Lui WO; Wiman KG
    Oncotarget; 2016 Jan; 7(2):1895-911. PubMed ID: 26672765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoy receptor 2 (DcR2) is a p53 target gene and regulates chemosensitivity.
    Liu X; Yue P; Khuri FR; Sun SY
    Cancer Res; 2005 Oct; 65(20):9169-75. PubMed ID: 16230375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TRIM8 modulates p53 activity to dictate cell cycle arrest.
    Caratozzolo MF; Micale L; Turturo MG; Cornacchia S; Fusco C; Marzano F; Augello B; D'Erchia AM; Guerrini L; Pesole G; Sbisà E; Merla G; Tullo A
    Cell Cycle; 2012 Feb; 11(3):511-23. PubMed ID: 22262183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.