BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24076587)

  • 21. Microtubule-associated protein 1B light chain (MAP1B-LC1) negatively regulates the activity of tumor suppressor p53 in neuroblastoma cells.
    Lee SY; Kim JW; Jeong MH; An JH; Jang SM; Song KH; Choi KH
    FEBS Lett; 2008 Aug; 582(19):2826-32. PubMed ID: 18656471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA silencing of checkpoint regulators sensitizes p53-defective prostate cancer cells to chemotherapy while sparing normal cells.
    Mukhopadhyay UK; Senderowicz AM; Ferbeyre G
    Cancer Res; 2005 Apr; 65(7):2872-81. PubMed ID: 15805289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PBK/TOPK interacts with the DBD domain of tumor suppressor p53 and modulates expression of transcriptional targets including p21.
    Hu F; Gartenhaus RB; Eichberg D; Liu Z; Fang HB; Rapoport AP
    Oncogene; 2010 Oct; 29(40):5464-74. PubMed ID: 20622899
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of hydroxyurea on the promoter occupancy profiles of tumor suppressor p53 and p73.
    Huang V; Lu X; Jiang Y; Wang JY
    BMC Biol; 2009 Jun; 7():35. PubMed ID: 19558638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell context dependent p53 genome-wide binding patterns and enrichment at repeats.
    Botcheva K; McCorkle SR
    PLoS One; 2014; 9(11):e113492. PubMed ID: 25415302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RhoGAPs attenuate cell proliferation by direct interaction with p53 tetramerization domain.
    Xu J; Zhou X; Wang J; Li Z; Kong X; Qian J; Hu Y; Fang JY
    Cell Rep; 2013 May; 3(5):1526-38. PubMed ID: 23684608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses.
    Yoon KA; Nakamura Y; Arakawa H
    J Hum Genet; 2004; 49(3):134-140. PubMed ID: 14986171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. apoB and apobec1, two genes key to lipid metabolism, are transcriptionally regulated by p53.
    Ashur-Fabian O; Har-Zahav A; Shaish A; Wiener Amram H; Margalit O; Weizer-Stern O; Dominissini D; Harats D; Amariglio N; Rechavi G
    Cell Cycle; 2010 Sep; 9(18):3761-70. PubMed ID: 20890106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NDRG1 is necessary for p53-dependent apoptosis.
    Stein S; Thomas EK; Herzog B; Westfall MD; Rocheleau JV; Jackson RS; Wang M; Liang P
    J Biol Chem; 2004 Nov; 279(47):48930-40. PubMed ID: 15377670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adenosine promotes GATA-2-regulated p53 gene transcription to induce HepG2 cell apoptosis.
    Yaguchi T; Nakano T; Gotoh A; Nishizaki T
    Cell Physiol Biochem; 2011; 28(4):761-70. PubMed ID: 22178888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. p53 amplifies Toll-like receptor 5 response in human primary and cancer cells through interaction with multiple signal transduction pathways.
    Shatz M; Shats I; Menendez D; Resnick MA
    Oncotarget; 2015 Jul; 6(19):16963-80. PubMed ID: 26220208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional characterisation of p53 mutants identified in breast cancers with suboptimal responses to anthracyclines or mitomycin.
    Berge EO; Huun J; Lillehaug JR; Lønning PE; Knappskog S
    Biochim Biophys Acta; 2013 Mar; 1830(3):2790-7. PubMed ID: 23246812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SCH529074, a small molecule activator of mutant p53, which binds p53 DNA binding domain (DBD), restores growth-suppressive function to mutant p53 and interrupts HDM2-mediated ubiquitination of wild type p53.
    Demma M; Maxwell E; Ramos R; Liang L; Li C; Hesk D; Rossman R; Mallams A; Doll R; Liu M; Seidel-Dugan C; Bishop WR; Dasmahapatra B
    J Biol Chem; 2010 Apr; 285(14):10198-212. PubMed ID: 20124408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of non-coding DNA variations on P53 and cMYC competitive inhibition at cis-overlapping motifs.
    Kin K; Chen X; Gonzalez-Garay M; Fakhouri WD
    Hum Mol Genet; 2016 Apr; 25(8):1517-27. PubMed ID: 26908612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ribosomal protein S27L is a direct p53 target that regulates apoptosis.
    He H; Sun Y
    Oncogene; 2007 Apr; 26(19):2707-16. PubMed ID: 17057733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Whole genome and normalized mRNA sequencing reveal genetic status of TK6, WTK1, and NH32 human B-lymphoblastoid cell lines.
    Revollo J; Petibone DM; McKinzie P; Knox B; Morris SM; Ning B; Dobrovolsky VN
    Mutat Res Genet Toxicol Environ Mutagen; 2016 Jan; 795():60-9. PubMed ID: 26774668
    [TBL] [Abstract][Full Text] [Related]  

  • 37. S-phase sensing of DNA-protein crosslinks triggers TopBP1-independent ATR activation and p53-mediated cell death by formaldehyde.
    Wong VC; Cash HL; Morse JL; Lu S; Zhitkovich A
    Cell Cycle; 2012 Jul; 11(13):2526-37. PubMed ID: 22722496
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The novel p53 target TNFAIP8 variant 2 is increased in cancer and offsets p53-dependent tumor suppression.
    Lowe JM; Nguyen TA; Grimm SA; Gabor KA; Peddada SD; Li L; Anderson CW; Resnick MA; Menendez D; Fessler MB
    Cell Death Differ; 2017 Jan; 24(1):181-191. PubMed ID: 27834950
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long non-coding RNA NEAT1 is a transcriptional target of p53 and modulates p53-induced transactivation and tumor-suppressor function.
    Idogawa M; Ohashi T; Sasaki Y; Nakase H; Tokino T
    Int J Cancer; 2017 Jun; 140(12):2785-2791. PubMed ID: 28295289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional activation of the carboxylesterase 2 gene by the p53 pathway.
    Choi W; Cogdell D; Feng Y; Hamilton SR; Zhang W
    Cancer Biol Ther; 2006 Nov; 5(11):1450-6. PubMed ID: 16963839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.