These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 24077173)

  • 21. Nuclear magnetic resonance provides a quantitative description of protein conformational flexibility on physiologically important time scales.
    Salmon L; Bouvignies G; Markwick P; Blackledge M
    Biochemistry; 2011 Apr; 50(14):2735-47. PubMed ID: 21388216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GUARDD: user-friendly MATLAB software for rigorous analysis of CPMG RD NMR data.
    Kleckner IR; Foster MP
    J Biomol NMR; 2012 Jan; 52(1):11-22. PubMed ID: 22160811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How does it really move? Recent progress in the investigation of protein nanosecond dynamics by NMR and simulation.
    Stenström O; Champion C; Lehner M; Bouvignies G; Riniker S; Ferrage F
    Curr Opin Struct Biol; 2022 Dec; 77():102459. PubMed ID: 36148743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular conformations in the pentasaccharide LNF-1 derived from NMR spectroscopy and molecular dynamics simulations.
    Säwén E; Stevensson B; Ostervall J; Maliniak A; Widmalm G
    J Phys Chem B; 2011 Jun; 115(21):7109-21. PubMed ID: 21545157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model-free analysis of protein backbone motion from residual dipolar couplings.
    Peti W; Meiler J; Brüschweiler R; Griesinger C
    J Am Chem Soc; 2002 May; 124(20):5822-33. PubMed ID: 12010057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overview of Relaxation Dispersion NMR Spectroscopy to Study Protein Dynamics and Protein-Ligand Interactions.
    Walinda E; Morimoto D; Sugase K
    Curr Protoc Protein Sci; 2018 Apr; 92(1):e57. PubMed ID: 30040207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Picosecond to Millisecond Structural Dynamics in Human Ubiquitin.
    Lindorff-Larsen K; Maragakis P; Piana S; Shaw DE
    J Phys Chem B; 2016 Aug; 120(33):8313-20. PubMed ID: 27082121
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of nano-second internal motion and determination of overall tumbling times independent of the time scale of internal motion in proteins from NMR relaxation data.
    Larsson G; Martinez G; Schleucher J; Wijmenga SS
    J Biomol NMR; 2003 Dec; 27(4):291-312. PubMed ID: 14512728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Projection angle restraints for studying structure and dynamics of biomolecules.
    Griesinger C; Peti W; Meiler J; Brüschweiler R
    Methods Mol Biol; 2004; 278():107-21. PubMed ID: 15317994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unraveling motion in proteins by combining NMR relaxometry and molecular dynamics simulations: A case study on ubiquitin.
    Champion C; Lehner M; Smith AA; Ferrage F; Bolik-Coulon N; Riniker S
    J Chem Phys; 2024 Mar; 160(10):. PubMed ID: 38465679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geometric Approximation: A New Computational Approach To Characterize Protein Dynamics from NMR Adiabatic Relaxation Dispersion Experiments.
    Chao FA; Byrd RA
    J Am Chem Soc; 2016 Jun; 138(23):7337-45. PubMed ID: 27225523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A general method for constructing atomic-resolution RNA ensembles using NMR residual dipolar couplings: the basis for interhelical motions revealed.
    Salmon L; Bascom G; Andricioaei I; Al-Hashimi HM
    J Am Chem Soc; 2013 Apr; 135(14):5457-66. PubMed ID: 23473378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A correspondence between solution-state dynamics of an individual protein and the sequence and conformational diversity of its family.
    Friedland GD; Lakomek NA; Griesinger C; Meiler J; Kortemme T
    PLoS Comput Biol; 2009 May; 5(5):e1000393. PubMed ID: 19478996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward a unified representation of protein structural dynamics in solution.
    Markwick PR; Bouvignies G; Salmon L; McCammon JA; Nilges M; Blackledge M
    J Am Chem Soc; 2009 Nov; 131(46):16968-75. PubMed ID: 19919148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous determination of fast and slow dynamics in molecules using extreme CPMG relaxation dispersion experiments.
    Reddy JG; Pratihar S; Ban D; Frischkorn S; Becker S; Griesinger C; Lee D
    J Biomol NMR; 2018 Jan; 70(1):1-9. PubMed ID: 29188417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of lysine side-chain amino groups in a protein studied by heteronuclear 1H−15N NMR spectroscopy.
    Esadze A; Li DW; Wang T; Brüschweiler R; Iwahara J
    J Am Chem Soc; 2011 Feb; 133(4):909-19. PubMed ID: 21186799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct Investigation of Slow Correlated Dynamics in Proteins via Dipolar Interactions.
    Fenwick RB; Schwieters CD; Vögeli B
    J Am Chem Soc; 2016 Jul; 138(27):8412-21. PubMed ID: 27331619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Weak alignment NMR: a hawk-eyed view of biomolecular structure.
    Bax A; Grishaev A
    Curr Opin Struct Biol; 2005 Oct; 15(5):563-70. PubMed ID: 16140525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solution NMR views of dynamical ordering of biomacromolecules.
    Ikeya T; Ban D; Lee D; Ito Y; Kato K; Griesinger C
    Biochim Biophys Acta Gen Subj; 2018 Feb; 1862(2):287-306. PubMed ID: 28847507
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural dynamics of protein backbone phi angles: extended molecular dynamics simulations versus experimental (3) J scalar couplings.
    Markwick PR; Showalter SA; Bouvignies G; Brüschweiler R; Blackledge M
    J Biomol NMR; 2009 Sep; 45(1-2):17-21. PubMed ID: 19629714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.