These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 24077265)
1. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems. Zhan C; Lu J; Jeremy Kropf A; Wu T; Jansen AN; Sun YK; Qiu X; Amine K Nat Commun; 2013; 4():2437. PubMed ID: 24077265 [TBL] [Abstract][Full Text] [Related]
2. Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach. Lu J; Zhan C; Wu T; Wen J; Lei Y; Kropf AJ; Wu H; Miller DJ; Elam JW; Sun YK; Qiu X; Amine K Nat Commun; 2014 Dec; 5():5693. PubMed ID: 25514346 [TBL] [Abstract][Full Text] [Related]
3. Role of Manganese Deposition on Graphite in the Capacity Fading of Lithium Ion Batteries. Vissers DR; Chen Z; Shao Y; Engelhard M; Das U; Redfern P; Curtiss LA; Pan B; Liu J; Amine K ACS Appl Mater Interfaces; 2016 Jun; 8(22):14244-51. PubMed ID: 27152912 [TBL] [Abstract][Full Text] [Related]
4. Building an artificial solid electrolyte interphase on spinel lithium manganate for high performance aqueous lithium-ion batteries. Dong W; Huang X; Jin Y; Xie M; Zhao W; Huang F Dalton Trans; 2020 Jun; 49(24):8136-8142. PubMed ID: 32496490 [TBL] [Abstract][Full Text] [Related]
5. Speciation of Transition Metal Dissolution in Electrolyte from Common Cathode Materials. Rynearson L; Antolini C; Jayawardana C; Yeddala M; Hayes D; Lucht BL Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202317109. PubMed ID: 38078892 [TBL] [Abstract][Full Text] [Related]
6. The Role of Cations on the Performance of Lithium Ion Batteries: A Quantitative Analytical Approach. Nowak S; Winter M Acc Chem Res; 2018 Feb; 51(2):265-272. PubMed ID: 29381052 [TBL] [Abstract][Full Text] [Related]
7. Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover. Li W; Kim UH; Dolocan A; Sun YK; Manthiram A ACS Nano; 2017 Jun; 11(6):5853-5863. PubMed ID: 28502161 [TBL] [Abstract][Full Text] [Related]
8. Unraveling manganese dissolution/deposition mechanisms on the negative electrode in lithium ion batteries. Xiao X; Liu Z; Baggetto L; Veith GM; More KL; Unocic RR Phys Chem Chem Phys; 2014 Jun; 16(22):10398-402. PubMed ID: 24733563 [TBL] [Abstract][Full Text] [Related]
9. Correlating cation ordering and voltage fade in a lithium-manganese-rich lithium-ion battery cathode oxide: a joint magnetic susceptibility and TEM study. Mohanty D; Sefat AS; Li J; Meisner RA; Rondinone AJ; Payzant EA; Abraham DP; Wood DL; Daniel C Phys Chem Chem Phys; 2013 Nov; 15(44):19496-509. PubMed ID: 24129599 [TBL] [Abstract][Full Text] [Related]
10. Effects of a Sodium Phosphate Electrolyte Additive on Elevated Temperature Performance of Spinel Lithium Manganese Oxide Cathodes. Jo M; Park SH; Lee H Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443193 [TBL] [Abstract][Full Text] [Related]
12. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries. Wang C; Yin L; Xiang D; Qi Y ACS Appl Mater Interfaces; 2012 Mar; 4(3):1636-42. PubMed ID: 22394097 [TBL] [Abstract][Full Text] [Related]
13. Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries. Wang C; Xing L; Vatamanu J; Chen Z; Lan G; Li W; Xu K Nat Commun; 2019 Jul; 10(1):3423. PubMed ID: 31366890 [TBL] [Abstract][Full Text] [Related]
14. Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2. Carroll KJ; Qian D; Fell C; Calvin S; Veith GM; Chi M; Baggetto L; Meng YS Phys Chem Chem Phys; 2013 Jul; 15(26):11128-38. PubMed ID: 23722534 [TBL] [Abstract][Full Text] [Related]
15. Improving the stability of nanostructured silicon thin film lithium-ion battery anodes through their controlled oxidation. Abel PR; Lin YM; Celio H; Heller A; Mullins CB ACS Nano; 2012 Mar; 6(3):2506-16. PubMed ID: 22372404 [TBL] [Abstract][Full Text] [Related]
16. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications. Mahmoud M; Gad-Allah TA; El-Khatib KM; El-Gohary F Bioresour Technol; 2011 Nov; 102(22):10459-64. PubMed ID: 21944282 [TBL] [Abstract][Full Text] [Related]
17. Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells. Gowda SR; Gallagher KG; Croy JR; Bettge M; Thackeray MM; Balasubramanian M Phys Chem Chem Phys; 2014 Apr; 16(15):6898-902. PubMed ID: 24608259 [TBL] [Abstract][Full Text] [Related]
18. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Liu T; Dai A; Lu J; Yuan Y; Xiao Y; Yu L; Li M; Gim J; Ma L; Liu J; Zhan C; Li L; Zheng J; Ren Y; Wu T; Shahbazian-Yassar R; Wen J; Pan F; Amine K Nat Commun; 2019 Oct; 10(1):4721. PubMed ID: 31624258 [TBL] [Abstract][Full Text] [Related]
19. Electrospun Zn(1-x)Mn(x)Fe2O4 nanofibers as anodes for lithium-ion batteries and the impact of mixed transition metallic oxides on battery performance. Teh PF; Pramana SS; Sharma Y; Ko YW; Madhavi S ACS Appl Mater Interfaces; 2013 Jun; 5(12):5461-7. PubMed ID: 23688028 [TBL] [Abstract][Full Text] [Related]
20. On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions. Banerjee A; Shilina Y; Ziv B; Ziegelbauer JM; Luski S; Aurbach D; Halalay IC J Am Chem Soc; 2017 Feb; 139(5):1738-1741. PubMed ID: 28122187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]