BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 24077390)

  • 1. The evolution of evolvability in microRNA target sites in vertebrates.
    Xu J; Zhang R; Shen Y; Liu G; Lu X; Wu CI
    Genome Res; 2013 Nov; 23(11):1810-6. PubMed ID: 24077390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human protein-RNA interaction network is highly stable across mammals.
    Ramakrishnan A; Janga SC
    BMC Genomics; 2019 Dec; 20(Suppl 12):1004. PubMed ID: 31888461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep conservation of microRNA-target relationships and 3'UTR motifs in vertebrates, flies, and nematodes.
    Chen K; Rajewsky N
    Cold Spring Harb Symp Quant Biol; 2006; 71():149-56. PubMed ID: 17381291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Most mammalian mRNAs are conserved targets of microRNAs.
    Friedman RC; Farh KK; Burge CB; Bartel DP
    Genome Res; 2009 Jan; 19(1):92-105. PubMed ID: 18955434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative evolutionary analysis of the FoxG1 transcription factor from diverse vertebrates identifies conserved recognition sites for microRNA regulation.
    Bredenkamp N; Seoighe C; Illing N
    Dev Genes Evol; 2007 Mar; 217(3):227-33. PubMed ID: 17260156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational prediction and experimental validation of evolutionarily conserved microRNA target genes in bilaterian animals.
    Takane K; Fujishima K; Watanabe Y; Sato A; Saito N; Tomita M; Kanai A
    BMC Genomics; 2010 Feb; 11():101. PubMed ID: 20144220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular phylogeny of the antiangiogenic and neurotrophic serpin, pigment epithelium derived factor in vertebrates.
    Xu X; Zhang SS; Barnstable CJ; Tombran-Tink J
    BMC Genomics; 2006 Oct; 7():248. PubMed ID: 17020603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of microRNA-target interactions by a target structure based hybridization model.
    Long D; Chan CY; Ding Y
    Pac Symp Biocomput; 2008; ():64-74. PubMed ID: 18232104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inference of miRNA targets using evolutionary conservation and pathway analysis.
    Gaidatzis D; van Nimwegen E; Hausser J; Zavolan M
    BMC Bioinformatics; 2007 Mar; 8():69. PubMed ID: 17331257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eleven ancestral gene families lost in mammals and vertebrates while otherwise universally conserved in animals.
    Danchin EG; Gouret P; Pontarotti P
    BMC Evol Biol; 2006 Jan; 6():5. PubMed ID: 16420703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Species-specific microRNA regulation influences phenotypic variability: perspectives on species-specific microRNA regulation.
    Mor E; Shomron N
    Bioessays; 2013 Oct; 35(10):881-8. PubMed ID: 23864354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of vertebrate genes related to prion and Shadoo proteins--clues from comparative genomic analysis.
    Premzl M; Gready JE; Jermiin LS; Simonic T; Marshall Graves JA
    Mol Biol Evol; 2004 Dec; 21(12):2210-31. PubMed ID: 15342797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widespread regulatory activity of vertebrate microRNA* species.
    Yang JS; Phillips MD; Betel D; Mu P; Ventura A; Siepel AC; Chen KC; Lai EC
    RNA; 2011 Feb; 17(2):312-26. PubMed ID: 21177881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miRNAs associated with immune response in teleost fish.
    Andreassen R; Høyheim B
    Dev Comp Immunol; 2017 Oct; 75():77-85. PubMed ID: 28254620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the Beckwith-Wiedemann syndrome region in vertebrates.
    Paulsen M; Khare T; Burgard C; Tierling S; Walter J
    Genome Res; 2005 Jan; 15(1):146-53. PubMed ID: 15590939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Putative promoter regions of miRNA genes involved in evolutionarily conserved regulatory systems among vertebrates.
    Fujita S; Iba H
    Bioinformatics; 2008 Feb; 24(3):303-8. PubMed ID: 18055479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNAs and the advent of vertebrate morphological complexity.
    Heimberg AM; Sempere LF; Moy VN; Donoghue PC; Peterson KJ
    Proc Natl Acad Sci U S A; 2008 Feb; 105(8):2946-50. PubMed ID: 18287013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative analysis of heart microRNAs in vertebrates brings novel insights into the evolution of genetic regulatory networks.
    Nachtigall PG; Bovolenta LA; Patton JG; Fromm B; Lemke N; Pinhal D
    BMC Genomics; 2021 Mar; 22(1):153. PubMed ID: 33663371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring the evolutionary history of primate microRNA binding sites: overcoming motif counting biases.
    Simkin AT; Bailey JA; Gao FB; Jensen JD
    Mol Biol Evol; 2014 Jul; 31(7):1894-901. PubMed ID: 24723422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny.
    Lee CT; Risom T; Strauss WM
    DNA Cell Biol; 2007 Apr; 26(4):209-18. PubMed ID: 17465887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.