These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 24077391)

  • 1. High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome.
    Hajjoul H; Mathon J; Ranchon H; Goiffon I; Mozziconacci J; Albert B; Carrivain P; Victor JM; Gadal O; Bystricky K; Bancaud A
    Genome Res; 2013 Nov; 23(11):1829-38. PubMed ID: 24077391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic characterization of the conformation and dynamics of budding yeast chromosome XII.
    Albert B; Mathon J; Shukla A; Saad H; Normand C; Léger-Silvestre I; Villa D; Kamgoue A; Mozziconacci J; Wong H; Zimmer C; Bhargava P; Bancaud A; Gadal O
    J Cell Biol; 2013 Jul; 202(2):201-10. PubMed ID: 23878273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capturing chromosome conformation.
    Dekker J; Rippe K; Dekker M; Kleckner N
    Science; 2002 Feb; 295(5558):1306-11. PubMed ID: 11847345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical mechanics of chromosomes: in vivo and in silico approaches reveal high-level organization and structure arise exclusively through mechanical feedback between loop extruders and chromatin substrate properties.
    He Y; Lawrimore J; Cook D; Van Gorder EE; De Larimat SC; Adalsteinsson D; Forest MG; Bloom K
    Nucleic Acids Res; 2020 Nov; 48(20):11284-11303. PubMed ID: 33080019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast.
    Tjong H; Gong K; Chen L; Alber F
    Genome Res; 2012 Jul; 22(7):1295-305. PubMed ID: 22619363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations.
    Arbona JM; Herbert S; Fabre E; Zimmer C
    Genome Biol; 2017 May; 18(1):81. PubMed ID: 28468672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genome folding mechanism in yeast.
    Kimura H; Shimooka Y; Nishikawa J; Miura O; Sugiyama S; Yamada S; Ohyama T
    J Biochem; 2013 Aug; 154(2):137-47. PubMed ID: 23620598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Single Locus Trajectories for Extracting In Vivo Chromatin Tethering Interactions.
    Amitai A; Toulouze M; Dubrana K; Holcman D
    PLoS Comput Biol; 2015 Aug; 11(8):e1004433. PubMed ID: 26317360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interphase chromosomes undergo constrained diffusional motion in living cells.
    Marshall WF; Straight A; Marko JF; Swedlow J; Dernburg A; Belmont A; Murray AW; Agard DA; Sedat JW
    Curr Biol; 1997 Dec; 7(12):930-9. PubMed ID: 9382846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlations of three-dimensional motion of chromosomal loci in yeast revealed by the double-helix point spread function microscope.
    Backlund MP; Joyner R; Weis K; Moerner WE
    Mol Biol Cell; 2014 Nov; 25(22):3619-29. PubMed ID: 25318676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rouse model with transient intramolecular contacts on a timescale of seconds recapitulates folding and fluctuation of yeast chromosomes.
    Socol M; Wang R; Jost D; Carrivain P; Vaillant C; Le Cam E; Dahirel V; Normand C; Bystricky K; Victor JM; Gadal O; Bancaud A
    Nucleic Acids Res; 2019 Jul; 47(12):6195-6207. PubMed ID: 31114898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles of chromatin organization in yeast: relevance of polymer models to describe nuclear organization and dynamics.
    Wang R; Mozziconacci J; Bancaud A; Gadal O
    Curr Opin Cell Biol; 2015 Jun; 34():54-60. PubMed ID: 25956973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational predictions of structures of multichromosomes of budding yeast.
    Gürsoy G; Xu Y; Liang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3945-8. PubMed ID: 25570855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Live-Cell Microscopy Analysis of Association Between Chromosome Domains and the Nucleolus in S. cerevisiae.
    Wang R; Normand C; Gadal O
    Methods Mol Biol; 2016; 1455():41-57. PubMed ID: 27576709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a dual role of actin in regulating chromosome organization and dynamics in yeast.
    Spichal M; Brion A; Herbert S; Cournac A; Marbouty M; Zimmer C; Koszul R; Fabre E
    J Cell Sci; 2016 Feb; 129(4):681-92. PubMed ID: 26763908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres.
    Therizols P; Duong T; Dujon B; Zimmer C; Fabre E
    Proc Natl Acad Sci U S A; 2010 Feb; 107(5):2025-30. PubMed ID: 20080699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principles of chromosomal organization: lessons from yeast.
    Zimmer C; Fabre E
    J Cell Biol; 2011 Mar; 192(5):723-33. PubMed ID: 21383075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From dynamic chromatin architecture to DNA damage repair and back.
    Fabre E; Zimmer C
    Nucleus; 2018 Jan; 9(1):161-170. PubMed ID: 29271297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncovering chromatin's contribution to the mitotic spindle: Applications of computational and polymer models.
    Larson ME; Harrison BD; Bloom K
    Biochimie; 2010 Dec; 92(12):1741-8. PubMed ID: 20600566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.