BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24077482)

  • 1. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation.
    Hirata E; Ménard-Moyon C; Venturelli E; Takita H; Watari F; Bianco A; Yokoyama A
    Nanotechnology; 2013 Nov; 24(43):435101. PubMed ID: 24077482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heparan sulfate mediates the proliferation and differentiation of rat mesenchymal stem cells.
    Dombrowski C; Song SJ; Chuan P; Lim X; Susanto E; Sawyer AA; Woodruff MA; Hutmacher DW; Nurcombe V; Cool SM
    Stem Cells Dev; 2009 May; 18(4):661-70. PubMed ID: 18690792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells.
    Eom YW; Oh JE; Lee JI; Baik SK; Rhee KJ; Shin HC; Kim YM; Ahn CM; Kong JH; Kim HS; Shim KY
    Biochem Biophys Res Commun; 2014 Feb; 445(1):16-22. PubMed ID: 24491556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application.
    Pan L; Pei X; He R; Wan Q; Wang J
    Colloids Surf B Biointerfaces; 2012 May; 93():226-34. PubMed ID: 22305638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone formation on carbon nanotube composite.
    Bhattacharya M; Wutticharoenmongkol-Thitiwongsawet P; Hamamoto DT; Lee D; Cui T; Prasad HS; Ahmad M
    J Biomed Mater Res A; 2011 Jan; 96(1):75-82. PubMed ID: 21105154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polysaccharide-based polyelectrolyte multilayer surface coatings can enhance mesenchymal stem cell response to adsorbed growth factors.
    Almodóvar J; Bacon S; Gogolski J; Kisiday JD; Kipper MJ
    Biomacromolecules; 2010 Oct; 11(10):2629-39. PubMed ID: 20795698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proliferation of canine bone marrow derived mesenchymal stem cells on different nanomaterial based thin film scaffolds.
    Das K; Mili B; A P M; Saxena AC; Kumar A; Singh P; Verma MR; Sarkar M; Bag S
    Tissue Cell; 2017 Apr; 49(2 Pt B):270-274. PubMed ID: 28190551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular function and adhesion mechanisms of human bone marrow mesenchymal stem cells on multi-walled carbon nanotubes.
    Kroustalli AA; Kourkouli SN; Deligianni DD
    Ann Biomed Eng; 2013 Dec; 41(12):2655-65. PubMed ID: 23820769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways.
    Wang C; Lin K; Chang J; Sun J
    Biomaterials; 2013 Jan; 34(1):64-77. PubMed ID: 23069715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalized carbon nanotubes as suitable scaffold materials for proliferation and differentiation of canine mesenchymal stem cells.
    Das K; Madhusoodan AP; Mili B; Kumar A; Saxena AC; Kumar K; Sarkar M; Singh P; Srivastava S; Bag S
    Int J Nanomedicine; 2017; 12():3235-3252. PubMed ID: 28458543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cells.
    Lee JH; Um S; Jang JH; Seo BM
    Cell Tissue Res; 2012 Jun; 348(3):475-84. PubMed ID: 22437875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hollow calcium phosphate microcarriers for bone regeneration: in vitro osteoproduction and ex vivo mechanical assessment.
    Santoni BG; Pluhar GE; Motta T; Wheeler DL
    Biomed Mater Eng; 2007; 17(5):277-89. PubMed ID: 17851170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TNF-alpha mediates p38 MAP kinase activation and negatively regulates bone formation at the injured growth plate in rats.
    Zhou FH; Foster BK; Zhou XF; Cowin AJ; Xian CJ
    J Bone Miner Res; 2006 Jul; 21(7):1075-88. PubMed ID: 16813528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments.
    Hankemeier S; Keus M; Zeichen J; Jagodzinski M; Barkhausen T; Bosch U; Krettek C; Van Griensven M
    Tissue Eng; 2005; 11(1-2):41-9. PubMed ID: 15738660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic carbon nanotubes: a new tool for shepherding mesenchymal stem cells by magnetic fields.
    Vittorio O; Quaranta P; Raffa V; Funel N; Campani D; Pelliccioni S; Longoni B; Mosca F; Pietrabissa A; Cuschieri A
    Nanomedicine (Lond); 2011 Jan; 6(1):43-54. PubMed ID: 21182417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of preparation methods on the bone formation potential of apatite-coated chitosan microspheres.
    Xu F; Ding H; Song F; Wang J
    J Biomater Sci Polym Ed; 2014; 25(18):2080-93. PubMed ID: 25324120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FGF-2 angiogenesis in bone regeneration within critical-sized bone defects in rat calvaria.
    Kigami R; Sato S; Tsuchiya N; Yoshimakai T; Arai Y; Ito K
    Implant Dent; 2013 Aug; 22(4):422-7. PubMed ID: 23835540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation.
    Nayak TR; Jian L; Phua LC; Ho HK; Ren Y; Pastorin G
    ACS Nano; 2010 Dec; 4(12):7717-25. PubMed ID: 21117641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of bioactive polyvinylpyrrolidone-iodine within bilayered collagen scaffolds enhances the differentiation and subchondral osteogenesis of mesenchymal stem cells.
    Jiang Y; Chen L; Zhang S; Tong T; Zhang W; Liu W; Xu G; Tuan RS; Heng BC; Crawford R; Xiao Y; Ouyang HW
    Acta Biomater; 2013 Sep; 9(9):8089-98. PubMed ID: 23707501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of doping in carbon nanotubes on the viability of biomimetic chitosan-carbon nanotubes-hydroxyapatite scaffolds.
    Fonseca-García A; Mota-Morales JD; Quintero-Ortega IA; García-Carvajal ZY; Martínez-López V; Ruvalcaba E; Landa-Solís C; Solis L; Ibarra C; Gutiérrez MC; Terrones M; Sanchez IC; del Monte F; Velasquillo MC; Luna-Bárcenas G
    J Biomed Mater Res A; 2014 Oct; 102(10):3341-51. PubMed ID: 23894015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.