These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 24077483)

  • 61. A fast and fully automatic method for cerebrovascular segmentation on time-of-flight (TOF) MRA image.
    Gao X; Uchiyama Y; Zhou X; Hara T; Asano T; Fujita H
    J Digit Imaging; 2011 Aug; 24(4):609-25. PubMed ID: 20824304
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Brain tumor segmentation from multimodal magnetic resonance images via sparse representation.
    Li Y; Jia F; Qin J
    Artif Intell Med; 2016 Oct; 73():1-13. PubMed ID: 27926377
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Simultaneous segmentation and anatomical labeling of the cerebral vasculature.
    Robben D; Türetken E; Sunaert S; Thijs V; Wilms G; Fua P; Maes F; Suetens P
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):307-14. PubMed ID: 25333132
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A Parallel Cerebrovascular Segmentation Algorithm Based on Focused Multi-Gaussians Model and Heterogeneous Markov Random Field.
    Lv Z; Mi F; Wu Z; Zhu Y; Liu X; Tian M; Zhang F; Wang X; Wan X
    IEEE Trans Nanobioscience; 2020 Jul; 19(3):538-546. PubMed ID: 32603298
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Improved signal-to-noise ratio in parallel coronary artery magnetic resonance angiography using graph cuts based Bayesian reconstruction.
    Singh G; Nguyen T; Kressler B; Spincemaille P; Raj A; Zabih R; Wang Y
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():703-6. PubMed ID: 17946852
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Spatial regularization of functional connectivity using high-dimensional Markov random fields.
    Liu W; Zhu P; Anderson JS; Yurgelun-Todd D; Fletcher PT
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):363-70. PubMed ID: 20879336
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Automatic cerebrovascular segmentation by accurate probabilistic modeling of TOF-MRA images.
    El-Baz A; Farag AA; Gimel'farb G; Hushek SG
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):34-42. PubMed ID: 16685826
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Segmentation of trabeculated structures using an anisotropic Markov random field: application to the study of the optic nerve head in glaucoma.
    Grau V; Downs JC; Burgoyne CF
    IEEE Trans Med Imaging; 2006 Mar; 25(3):245-55. PubMed ID: 16524082
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Collaborative multi organ segmentation by integrating deformable and graphical models.
    Uzunbaş MG; Chen C; Zhang S; Poh KM; Li K; Metaxas D
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):157-64. PubMed ID: 24579136
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Generalized fuzzy clustering for segmentation of multi-spectral magnetic resonance images.
    He R; Datta S; Sajja BR; Narayana PA
    Comput Med Imaging Graph; 2008 Jul; 32(5):353-66. PubMed ID: 18387784
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Automatic brain segmentation in Time-of-Flight MRA images.
    Forkert ND; Säring D; Fiehler J; Illies T; Möller D; Handels H
    Methods Inf Med; 2009; 48(5):399-407. PubMed ID: 19696951
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A MAP-based image interpolation method via Viterbi decoding of Markov chains of interpolation functions.
    Vedadi F; Shirani S
    IEEE Trans Image Process; 2014 Jan; 23(1):424-38. PubMed ID: 24239997
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Segmentation of ultrasound B-mode images with intensity inhomogeneity correction.
    Xiao G; Brady M; Noble JA; Zhang Y
    IEEE Trans Med Imaging; 2002 Jan; 21(1):48-57. PubMed ID: 11838663
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ant colony optimization for image regularization based on a nonstationary Markov modeling.
    Le Hégarat-Mascle S; Kallel A; Descombes X
    IEEE Trans Image Process; 2007 Mar; 16(3):865-78. PubMed ID: 17357743
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Gap-free segmentation of vascular networks with automatic image processing pipeline.
    Hsu CY; Ghaffari M; Alaraj A; Flannery M; Zhou XJ; Linninger A
    Comput Biol Med; 2017 Mar; 82():29-39. PubMed ID: 28135646
    [TBL] [Abstract][Full Text] [Related]  

  • 76. IMaGe: Iterative Multilevel Probabilistic Graphical Model for Detection and Segmentation of Multiple Sclerosis Lesions in Brain MRI.
    Subbanna N; Precup D; Arnold D; Arbel T
    Inf Process Med Imaging; 2015; 24():514-26. PubMed ID: 26221699
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Markov random field driven region-based active contour model (MaRACel): application to medical image segmentation.
    Xu J; Monaco JP; Madabhushi A
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):197-204. PubMed ID: 20879400
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Automatic detection of three-dimensional vascular tree centerlines and bifurcations in high-resolution magnetic resonance angiography.
    Zhang L; Chapman BE; Parker DL; Roberts JA; Guo J; Vemuri P; Moon SM; Noo F
    Invest Radiol; 2005 Oct; 40(10):661-71. PubMed ID: 16189435
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nonlinear color space and spatiotemporal MRF for hierarchical segmentation of face features in video.
    Liévin M; Luthon F
    IEEE Trans Image Process; 2004 Jan; 13(1):63-71. PubMed ID: 15376958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.