These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24077611)

  • 1. Atomic structure of titania nanosheet with vacancies.
    Ohwada M; Kimoto K; Mizoguchi T; Ebina Y; Sasaki T
    Sci Rep; 2013 Sep; 3():2801. PubMed ID: 24077611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EELS study of Fe- or Co-doped titania nanosheets.
    Ohwada M; Kimoto K; Ebina Y; Sasaki T
    Microscopy (Oxf); 2015 Apr; 64(2):77-85. PubMed ID: 25391607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies.
    Sakai N; Ebina Y; Takada K; Sasaki T
    J Am Chem Soc; 2004 May; 126(18):5851-8. PubMed ID: 15125677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemistry of NO2 on oxide surfaces: formation of NO3 on TiO2(110) and NO2<-->O vacancy interactions.
    Rodriguez JA; Jirsak T; Liu G; Hrbek J; Dvorak J; Maiti A
    J Am Chem Soc; 2001 Oct; 123(39):9597-605. PubMed ID: 11572680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Photocatalytic Water Treatment through Nanocrystal Engineering: Mesoporous Nanosheet-Assembled 3D BiOCl Hierarchical Nanostructures That Induce Unprecedented Large Vacancies.
    Guo SQ; Zhu XH; Zhang HJ; Gu BC; Chen W; Liu L; Alvarez PJJ
    Environ Sci Technol; 2018 Jun; 52(12):6872-6880. PubMed ID: 29722537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trapping Hydrogen Atoms in Vacancies of Li
    Su JY; Li YW; Wang WH; Li K; Yang W
    ACS Omega; 2022 Aug; 7(31):27149-27156. PubMed ID: 35967035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ control of oxygen vacancies in TiO₂ by atomic layer deposition for resistive switching devices.
    Park SJ; Lee JP; Jang JS; Rhu H; Yu H; You BY; Kim CS; Kim KJ; Cho YJ; Baik S; Lee W
    Nanotechnology; 2013 Jul; 24(29):295202. PubMed ID: 23799660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen vacancy modulation of two-dimensional γ-Ga
    Zhang X; Zhang Z; Huang H; Wang Y; Tong N; Lin J; Liu D; Wang X
    Nanoscale; 2018 Dec; 10(45):21509-21517. PubMed ID: 30427361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct TEM Observation of Vacancy-Mediated Heteroatom Incorporation into a Zeolite Framework: Towards Microscopic Design of Zeolite Catalysts.
    Li J; Mayoral A; Kubota Y; Inagaki S; Yu J; Terasaki O
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202211196. PubMed ID: 36194383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of N-doping on the structure and electronic properties of titania nanoparticle photocatalysts.
    Stewart SJ; Fernandez-García M; Belver C; Mun BS; Requejo FG
    J Phys Chem B; 2006 Aug; 110(33):16482-6. PubMed ID: 16913779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct imaging of reconstructed atoms on TiO2 (110) surfaces.
    Shibata N; Goto A; Choi SY; Mizoguchi T; Findlay SD; Yamamoto T; Ikuhara Y
    Science; 2008 Oct; 322(5901):570-3. PubMed ID: 18948536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Individual Oxygen Vacancies: Domain-Wall Conductivity and Controllable Topological Solitons.
    Elangovan H; Barzilay M; Huang J; Liu S; Cohen S; Ivry Y
    ACS Nano; 2021 Aug; 15(8):13380-13388. PubMed ID: 34355902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structural and electronic properties of reduced amorphous titania.
    Deskins NA; Du J; Rao P
    Phys Chem Chem Phys; 2017 Jul; 19(28):18671-18684. PubMed ID: 28695939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On Certain Topological Indices of Three-Layered Single-Walled Titania Nanosheets.
    Arockiaraj M; Liu JB; Arulperumjothi M; Prabhu S
    Comb Chem High Throughput Screen; 2022; 25(3):483-495. PubMed ID: 33109055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Fabricating Oxygen Vacancy-Rich TiO
    Zheng R; Shu C; Hou Z; Hu A; Hei P; Yang T; Li J; Liang R; Long J
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46696-46704. PubMed ID: 31755689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superlattice assembly of graphene oxide (GO) and titania nanosheets: fabrication, in situ photocatalytic reduction of GO and highly improved carrier transport.
    Cai X; Ma R; Ozawa TC; Sakai N; Funatsu A; Sasaki T
    Nanoscale; 2014 Nov; 6(23):14419-27. PubMed ID: 25340970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Layered sphere-shaped TiO₂ capped with gold nanoparticles on structural defects and their catalysis of formaldehyde oxidation.
    Ma C; Pang G; He G; Li Y; He C; Hao Z
    J Environ Sci (China); 2016 Jan; 39():77-85. PubMed ID: 26899647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic and structural properties of Ti vacancies on the (001) surface of TiS2: theoretical scanning tunneling microscopy images.
    Amzallag E; Baraille I; Martinez H; Rérat M; Loudet M; Gonbeau D
    J Chem Phys; 2007 Feb; 126(7):074703. PubMed ID: 17328623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of doping Ti on the vacancy trapping mechanism for helium in ZrCo from first principles.
    Wang Q; Kong X; Yu Y; Han H; Sang G; Zhang G; Yi Y; Gao T
    Phys Chem Chem Phys; 2019 Oct; 21(37):20909-20918. PubMed ID: 31517356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic layer-by-layer deposition assisted synthesis of Cu, N co-doped TiO2 nanosheets with enhanced visible light photocatalytic performance.
    Wang X; Yan Y; Hao B; Chen G
    Dalton Trans; 2014 Oct; 43(37):14054-60. PubMed ID: 25158222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.