These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24077662)

  • 1. Evaluation of magnetic resonance imaging issues for implantable microfabricated magnetic actuators.
    Lee H; Xu Q; Shellock FG; Bergsneider M; Judy JW
    Biomed Microdevices; 2014 Feb; 16(1):153-61. PubMed ID: 24077662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MRI compatibility of microfabricated magnetic actuators for implantable catheters: Mechanical evaluations.
    Lee H; Xu Q; Ephrati J; Bergsneider M; Judy JW
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():907-10. PubMed ID: 21096979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallic neurosurgical implants: evaluation of magnetic field interactions, heating, and artifacts at 1.5-Tesla.
    Shellock FG
    J Magn Reson Imaging; 2001 Sep; 14(3):295-9. PubMed ID: 11536406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of MRI issues for a new neurological implant, the Sensor Reservoir.
    Shellock FG; Knebel J; Prat AD
    Magn Reson Imaging; 2013 Sep; 31(7):1245-50. PubMed ID: 23602731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MRI compatibility and visibility assessment of implantable medical devices.
    Schueler BA; Parrish TB; Lin JC; Hammer BE; Pangrle BJ; Ritenour ER; Kucharczyk J; Truwit CL
    J Magn Reson Imaging; 1999 Apr; 9(4):596-603. PubMed ID: 10232520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ex vivo evaluation of ferromagnetism, heating, and artifacts produced by heart valve prostheses exposed to a 1.5-T MR system.
    Shellock FG; Morisoli SM
    J Magn Reson Imaging; 1994; 4(5):756-8. PubMed ID: 7981523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing the immunity of active implantable medical devices to CW magnetic fields up to 1 MHz by an immersion method.
    Buzduga V; Witters DM; Casamento JP; Kainz W
    IEEE Trans Biomed Eng; 2007 Sep; 54(9):1679-86. PubMed ID: 17867360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyimide-based magnetic microactuators for biofouling removal.
    Qi Yang ; Tran Nguyen ; Chunan Liu ; Miller J; Rhoads JF; Linnes J; Hyowon Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5757-5760. PubMed ID: 28269562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of MR issues for the latest standard brands of orthopedic metal implants: plates and screws.
    Zou YF; Chu B; Wang CB; Hu ZY
    Eur J Radiol; 2015 Mar; 84(3):450-457. PubMed ID: 25544555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional evaluation of magnetic microactuators for removing biological accumulation: an in vitro study.
    Lee SA; Pinney JR; Khialeeva E; Bergsneider M; Judy JW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():947-50. PubMed ID: 19162814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of magnetic resonance imaging susceptibility artifacts caused by neurosurgical biomaterials: comparison of 0.5, 1.5, and 3.0 Tesla magnetic fields.
    Matsuura H; Inoue T; Ogasawara K; Sasaki M; Konno H; Kuzu Y; Nishimoto H; Ogawa A
    Neurol Med Chir (Tokyo); 2005 Aug; 45(8):395-8; discussion 398-9. PubMed ID: 16127256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRI interactions of a fully implantable pressure monitoring device.
    Stehlin EF; McCormick D; Malpas SC; Pontré BP; Heppner PA; Budgett DM
    J Magn Reson Imaging; 2015 Nov; 42(5):1441-9. PubMed ID: 25865598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implantable spinal fusion stimulator: assessment of MR safety and artifacts.
    Shellock FG; Hatfield M; Simon BJ; Block S; Wamboldt J; Starewicz PM; Punchard WF
    J Magn Reson Imaging; 2000 Aug; 12(2):214-23. PubMed ID: 10931583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prosthetic heart valves: evaluation of magnetic field interactions, heating, and artifacts at 1.5 T.
    Edwards MB; Taylor KM; Shellock FG
    J Magn Reson Imaging; 2000 Aug; 12(2):363-9. PubMed ID: 10931602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metallic neurosurgical implants for cranial reconstruction and fixation: assessment of magnetic field interactions, heating and artefacts at 3.0 Tesla.
    Cunningham AS; Harding S; Chatfield DA; Hutchinson P; Carpenter TA; Pickard JD; Menon DK
    Br J Neurosurg; 2005 Apr; 19(2):167-72. PubMed ID: 16120521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body MR Imaging: Artifacts, k-Space, and Solutions.
    Huang SY; Seethamraju RT; Patel P; Hahn PF; Kirsch JE; Guimaraes AR
    Radiographics; 2015; 35(5):1439-60. PubMed ID: 26207581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance imaging of artificial lumbar disks: safety and metal artifacts.
    Yang CW; Liu L; Wang J; Dong AS; Lu JP; He SS; Li M
    Chin Med J (Engl); 2009 Apr; 122(8):911-6. PubMed ID: 19493413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of magnetic field distortion on the accuracy of passive device localization frames in MR imaging.
    Cepek J; Chronik BA; Fenster A
    Med Phys; 2014 May; 41(5):052301. PubMed ID: 24784394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance imaging compatibility and safety of the SOUNDTEC Direct System.
    Dyer RK; Nakmali D; Dormer KJ
    Laryngoscope; 2006 Aug; 116(8):1321-33. PubMed ID: 16885731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MR imaging and vascular access ports: ex vivo evaluation of ferromagnetism, heating, and artifacts at 1.5 T.
    Shellock FG; Nogueira M; Morisoli S
    J Magn Reson Imaging; 1995; 5(4):481-4. PubMed ID: 7549216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.