BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24077683)

  • 1. Hydrolysis of milk-derived bioactive peptides by cell-associated extracellular peptidases of Streptococcus thermophilus.
    Hafeez Z; Cakir-Kiefer C; Girardet JM; Jardin J; Perrin C; Dary A; Miclo L
    Appl Microbiol Biotechnol; 2013 Nov; 97(22):9787-99. PubMed ID: 24077683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The X-prolyl dipeptidyl-peptidase PepX of Streptococcus thermophilus initially described as intracellular is also responsible for peptidase extracellular activity.
    Hafeez Z; Cakir-Kiefer C; Lecomte X; Miclo L; Dary-Mourot A
    J Dairy Sci; 2019 Jan; 102(1):113-123. PubMed ID: 30391182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Insights into the Proteolytic System of Streptococcus thermophilus: Use of Isracidin To Characterize Cell-Associated Extracellular Peptidase Activities.
    Hafeez Z; Cakir-Kiefer C; Girardet JM; Lecomte X; Paris C; Galia W; Dary A; Miclo L
    J Agric Food Chem; 2015 Sep; 63(34):7522-31. PubMed ID: 26193375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability of hydrolysis of β-, αs1-, and αs2-caseins by 10 strains of Streptococcus thermophilus and resulting bioactive peptides.
    Miclo L; Roux E; Genay M; Brusseaux E; Poirson C; Jameh N; Perrin C; Dary A
    J Agric Food Chem; 2012 Jan; 60(2):554-65. PubMed ID: 22103626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteolytic System of
    Rodríguez-Serrano GM; García-Garibay M; Cruz-Guerrero AE; Gómez-Ruiz L; Ayala-Niño A; Castañeda-Ovando A; González-Olivares LG
    J Microbiol Biotechnol; 2018 Oct; 28(10):1581-1588. PubMed ID: 30196594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Streptococcus thermophilus growth in soya milk: Sucrose consumption, nitrogen metabolism, soya protein hydrolysis and role of the cell-wall protease PrtS.
    Boulay M; Al Haddad M; Rul F
    Int J Food Microbiol; 2020 Dec; 335():108903. PubMed ID: 33065381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteolytic Activity and Production of γ-Aminobutyric Acid by Streptococcus thermophilus Cultivated in Microfiltered Pasteurized Milk.
    Brasca M; Hogenboom JA; Morandi S; Rosi V; D'Incecco P; Silvetti T; Pellegrino L
    J Agric Food Chem; 2016 Nov; 64(45):8604-8614. PubMed ID: 27787997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic fragmentation of the antimicrobial peptides casocidin and isracidin by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus.
    Somkuti GA; Paul M
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):235-42. PubMed ID: 20165946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofilm Formation on Stainless Steel by Streptococcus thermophilus UC8547 in Milk Environments Is Mediated by the Proteinase PrtS.
    Bassi D; Cappa F; Gazzola S; Orrù L; Cocconcelli PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning of milk-derived bioactive peptides in Streptococcus thermophilus.
    Renye JA; Somkuti GA
    Biotechnol Lett; 2008 Apr; 30(4):723-30. PubMed ID: 18004511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell Proteins Obtained by Peptic Shaving of Two Phenotypically Different Strains of
    Allouche R; Genay M; Dary-Mourot A; Hafeez Z; Miclo L
    Nutrients; 2022 Nov; 14(22):. PubMed ID: 36432464
    [No Abstract]   [Full Text] [Related]  

  • 12. Molecular and biotechnological characteristics of proteolytic activity from
    Phupaboon S; Hashim FJ; Phumkhachorn P; Rattanachaikunsopon P
    AIMS Microbiol; 2023; 9(4):591-611. PubMed ID: 38173974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three Distinct Proteases Are Responsible for Overall Cell Surface Proteolysis in Streptococcus thermophilus.
    Boulay M; Metton C; Mézange C; Oliveira Correia L; Meylheuc T; Monnet V; Gardan R; Juillard V
    Appl Environ Microbiol; 2021 Nov; 87(23):e0129221. PubMed ID: 34550764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of
    Yamamoto E; Watanabe R; Koizumi A; Ishida T; Kimura K
    Biosci Microbiota Food Health; 2020; 39(3):169-174. PubMed ID: 32775136
    [No Abstract]   [Full Text] [Related]  

  • 15. Efficient bioconversion of lactose in milk and whey: immobilization and biochemical characterization of a beta-galactosidase from the dairy Streptococcus thermophilus LMD9 strain.
    Rhimi M; Boisson A; Dejob M; Boudebouze S; Maguin E; Haser R; Aghajari N
    Res Microbiol; 2010 Sep; 161(7):515-25. PubMed ID: 20472057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Insights into Various Production Characteristics of Streptococcus thermophilus Strains.
    Cui Y; Xu T; Qu X; Hu T; Jiang X; Zhao C
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27754312
    [No Abstract]   [Full Text] [Related]  

  • 17. Degradation of milk-based bioactive peptides by yogurt fermentation bacteria.
    Paul M; Somkuti GA
    Lett Appl Microbiol; 2009 Sep; 49(3):345-50. PubMed ID: 19622076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human U937 cell surface peptidase activities: characterization and degradative effect on tumor necrosis factor-alpha.
    Bauvois B; Sancéau J; Wietzerbin J
    Eur J Immunol; 1992 Apr; 22(4):923-30. PubMed ID: 1348032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fast milk acidifying phenotype of Streptococcus thermophilus can be acquired by natural transformation of the genomic island encoding the cell-envelope proteinase PrtS.
    Dandoy D; Fremaux C; de Frahan MH; Horvath P; Boyaval P; Hols P; Fontaine L
    Microb Cell Fact; 2011 Aug; 10 Suppl 1(Suppl 1):S21. PubMed ID: 21995822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part II: bioactive peptide functions.
    Hayes M; Stanton C; Fitzgerald GF; Ross RP
    Biotechnol J; 2007 Apr; 2(4):435-49. PubMed ID: 17407211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.