BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24077683)

  • 21. [Hydrolysis of peptides by immobilized bacterial peptide hydrolases].
    Nekliudov AD; Deniakina EK
    Prikl Biokhim Mikrobiol; 2004; 40(4):435-41. PubMed ID: 15455716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasound-assisted generation of ACE-inhibitory peptides from casein hydrolyzed with nanoencapsulated protease.
    Madadlou A; Sheehan D; Emam-Djomeh Z; Mousavi ME
    J Sci Food Agric; 2011 Aug; 91(11):2112-6. PubMed ID: 21538371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic hydrolysis of Grass Carp fish skin hydrolysates able to promote the proliferation of Streptococcus thermophilus.
    Wang XN; Qin M; Feng YY; Chen JK; Song YS
    J Sci Food Agric; 2017 Sep; 97(12):4235-4241. PubMed ID: 28251668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological properties of milk ingredients released by fermentation.
    Beermann C; Hartung J
    Food Funct; 2013 Feb; 4(2):185-99. PubMed ID: 23111492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dietary effect of folate-rich fermented milk produced by Streptococcus thermophilus strains on hemoglobin level.
    Iyer R; Tomar SK
    Nutrition; 2011 Oct; 27(10):994-7. PubMed ID: 21658908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport across Caco-2 cell monolayer and sensitivity to hydrolysis of two anxiolytic peptides from αs1-casein, α-casozepine, and αs1-casein-f91-97: effect of bile salts.
    Cakir-Kiefer C; Miclo L; Balandras F; Dary A; Soligot C; Le Roux Y
    J Agric Food Chem; 2011 Nov; 59(22):11956-65. PubMed ID: 21981611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolically improved exopolysaccharide production by Streptococcus thermophilus and its influence on the rheological properties of fermented milk.
    Svensson M; Waak E; Svensson U; Rådström P
    Appl Environ Microbiol; 2005 Oct; 71(10):6398-400. PubMed ID: 16204566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The proteolytic system of lactic acid bacteria.
    Mayo B
    Microbiologia; 1993 Dec; 9(2):90-106. PubMed ID: 8172695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of the metabolism of urea on the acidifying activity of Streptococcus thermophilus.
    Pernoud S; Fremaux C; Sepulchre A; Corrieu G; Monnet C
    J Dairy Sci; 2004 Mar; 87(3):550-5. PubMed ID: 15202638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia.
    Yu J; Wang WH; Menghe BL; Jiri MT; Wang HM; Liu WJ; Bao QH; Lu Q; Zhang JC; Wang F; Xu HY; Sun TS; Zhang HP
    J Dairy Sci; 2011 Jul; 94(7):3229-41. PubMed ID: 21700007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrolysis of beta-casein and peptides by intracellular neutral protease of Streptococcus diacetylactis.
    Zevaco C; Desmazeaud MJ
    J Dairy Sci; 1980 Jan; 63(1):15-24. PubMed ID: 6768775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The antihypertensive effect of fermented milks].
    Domínguez González KN; Cruz Guerrero AE; Márquez HG; Gómez Ruiz LC; García-Garibay M; Rodríguez Serrano GM
    Rev Argent Microbiol; 2014; 46(1):58-65. PubMed ID: 24721277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and characterization of X-prolyl-dipeptidyl-aminopeptidase from Lactobacillus lactis and from Streptococcus thermophilus.
    Meyer J; Jordi R
    J Dairy Sci; 1987 Apr; 70(4):738-45. PubMed ID: 2884242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum.
    Korhonen H; Pihlanto A
    Curr Pharm Des; 2007; 13(8):829-43. PubMed ID: 17430184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing.
    Gobbetti M; Stepaniak L; De Angelis M; Corsetti A; Di Cagno R
    Crit Rev Food Sci Nutr; 2002; 42(3):223-39. PubMed ID: 12058981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Possible promoter regions within the proteolytic system in Streptococcus thermophilus and their interaction with the CodY homolog.
    Liu F; Du L; Du P; Huo G
    FEMS Microbiol Lett; 2009 Aug; 297(2):164-72. PubMed ID: 19552712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emergence of a cell wall protease in the Streptococcus thermophilus population.
    Delorme C; Bartholini C; Bolotine A; Ehrlich SD; Renault P
    Appl Environ Microbiol; 2010 Jan; 76(2):451-60. PubMed ID: 19915034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antimutagenic activity of milk fermented by Streptococcus thermophilus and Lactobacillus bulgaricus.
    Bodana AR; Rao DR
    J Dairy Sci; 1990 Dec; 73(12):3379-84. PubMed ID: 2099363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Streptococcus thermophilus, an emerging and promising tool for heterologous expression: Advantages and future trends.
    Lecomte X; Gagnaire V; Lortal S; Dary A; Genay M
    Food Microbiol; 2016 Feb; 53(Pt A):2-9. PubMed ID: 26611164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Altered nucleotide sugar metabolism in Streptococcus thermophilus interferes with nitrogen metabolism.
    Svensson M; Lohmeier-Vogel E; Waak E; Svensson U; Rådström P
    Int J Food Microbiol; 2007 Jan; 113(2):195-200. PubMed ID: 16996629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.